To See the World in a Dividing Cell

If you are interested in supporting our research or our Johns Hopkins Initiative for Careers in Science and Medicine and the Summer Academic Research Experience program for low-income Baltimore youth, please contact Doug (dnr@jhmi.edu), Sarah Farrell, Director of Development (sfarrell@jhmi.edu), or Katie Sullivan, Associate Director of Development (ksulli52@jhmi.edu), Institute for Basic Biomedical Sciences.

Lab announcements:

Jul 23, 2021: Check out my interview by Dr. Kimberly Skarupski for the Faculty Factory podcast series.  Here we discussed setting up and operating a research lab and the importance of mentorship in the process: Habits and Hacks with Douglas N. Robinson, PhD

Jun 15, 2021: Our work just got featured in Scientific American: Treating a Deadly Lung Disease with a Little Help from Amoebas.  Here is the Scientific American issue

May 7, 2021: We welcome our new doctoral students, Eleana Parajón and Mark Allan Jacob.  Eleana and Mark, I am excited about all the discoveries we will make together!

Apr 13, 2021: Check out our latest press release on how “Amoeba biology reveals a potential treatment target for lung disease.”

Feb 26, 2021: Congrats to Corrine and Jenny for their awesome work described in our new paper on adenine nucleotide translocase as a protector from cigarette smoke and its important role in airway hydration and ciliary function.    Check out Corrine’s First Person interview about this work here

Sep 29, 2020: Our patent for Treating and Preventing Diseases by Modulating Cell Mechanics (US Patent: US10787410B2) has been issued.

Sep 24, 2020: Doug Robinson gets recognized as an ASCB Fellow.  Fellows are selected for their lifetime achievements in advancing cell biology. 

Jul 24, 2020: Thinzar Htwe, SARE Scholar 2019 and rising Stanford freshman, published her excellent Op-Ed piece on the importance of socioeconomic and racial/ethnic diversity in STEM and healthcare.  Her Op-Ed was published in the Stanford Daily: Preparing Future Generations: BIPOC and FLI representation in science, research, and medicine

Jan 20, 2020: Doctoral Diversity Program Scholar and now 2nd-yr medical student Michelle Colbert and I got to share the story of the Johns Hopkins Initiative for Careers in Science and Medicine on “Midday with Tom Hall on WYPR (88.1) in Baltimore.  Michelle was awesome in this interview!  Here is the link: MLK Jr. Day of Service, Pt 2: Hopkins’ Careers in Science & Medicine Initiative

Dec 2, 2019: Thanks Ashanti Edwards and Ahna Skop for inviting us to prepare a piece for the ASCB newsletter in which we describe the Johns Hopkins Initiative for Careers in Science and Medicine.  

Nov 29, 2019: Check out the interviews with three Summer Academic Research Experience (SARE) alums: Q&A — The Next Generation of Scientific Researchers.

Nov 22, 2019: November is COPD Awareness Month.  Chronic Obstructive Pulmonary Disease is currently the 3rd leading cause of disease-associated death in the U.S., and yet no therapeutic strategy directly addresses the root cause of the disease. To address complex diseases like COPD requires an interdisciplinary team, and thankfully we have had the opportunity to build such a team that includes two pulmonary physician scientists Ramana Sidhaye and Corrine Kliment and a pharmacology doctoral student Jenny Nguyen.  Thank you, Biophysical Society, for sharing our work on your blog

Oct 17, 2019: Check out the new Technology Feature by Vivien Marx in Nature Methods.  Vivien highlights some of the breakthroughs and impact in the mechanobiology field.  Thanks, Vivien, for writing this!

Sept 18, 2019: Check out the press release on our new Cancer Research paper: Johns Hopkins Researchers ID Compound That Could Play A Novel Role In Halting Pancreatic Cancer Progression

May 24, 2019: Our lab’s mission – the galaxy depends on us! 🙂

Apr 9, 2019: Congratulations to Priyanka for winning the David Yue Award as part of the School of Medicine’s Young Investigator’s Day recognition!  Read Priyanka’s YIDP interview here.

Jan 16, 2019: Check out Priyanka’s First Person Interview and the journal cover art published with her article in Journal of Cell Science!  Great job, Priyanka!

May 15, 2018: Doug was awarded the Provost’s Prize for Faculty Excellence in Diversity.  

Jun 2, 2017: You can listen to Doug’s ASBMB Ruth Kirschstein Diversity of Science Award talk here

​Jun 2, 2017: See Doug’s ASBMB interview for his recognition by ASBMB’s Ruth Kirschstein Diversity of Science Award

Feb 24, 2017: Check out the Baltimore Sun article on our new DARPA-funded project.  We are aiming to engineer Dictyostelium cells to be able to perform specific tasks.

Feb 19, 2017: Check out our video describing our outreach program, the Johns Hopkins Initiative for Careers in Science and Medicine

Feb 2, 2017: Doug is selected as a Science Super Hero by Discovery Communications.  The goal of the program is to call attention to the impact of science on community.  We thank Discovery Communications for their recognition of our efforts.

Dec 12, 2016:  Check out our Op-Ed piece in support of the federal Health Careers Opportunity Program: Don’t cut a federal program that helps disadvantaged students enter health careers Please remind your senators and representatives how much impact we can have for a pretty small investment!

Mar 4, 2016: Corrine Kliment was just awarded the Baurenschmidt Award from the Eudowood Board.  Congrats, Corrine!  You can read more about Corrine’s work in this ASCB write up.

Dec 14, 2015: Please check out our ASCB Celldance Video.  We attempted to present how you go from basic science discovery to making an impact on a disease, in this case on pancreatic cancer.  The Celldance Videos are designed to communicate our science stories through live cell imaging for a general audience.  The press release may be found here.  

Aug 22, 2015: Check out this video on our 4-HAP work on ScIQ, TYT’s New Science Channel: Enjoy!

Jun 10, 2015: Check out Mariya Khan’s animatic depicting the design constraints of a dividing cell.  Please make sure your sound is turned on. 

See our newest press releases:

Wanted: Self-Driving Cells to Pursue Deadly Bacteria: Johns Hopkins Team Aims to Make Micro-Soldiers That Seek Out and Subdue Pathogens

Drawing on their expertise in control systems and cell biology, Johns Hopkins University researchers are setting out to design and test troops of self-directed microscopic warriors that can locate and neutralize dangerous strains of bacteria.  Please see the full story here.

Cellular ‘Cruise Control’ Systems Let Cells Sense and Adapt to Changing Demands

Cells are the ultimate smart material. They can sense the demands being placed on them during critical life processes and then respond by strengthening, remodeling or self-repairing, for instance. To do this, cells use “mechanosensory” systems similar to the cruise control that lets a car’s engine adjust its power output when going up or down hills. Researchers are uncovering new details on cells’ molecular cruise control systems. By learning more about the inner workings of these systems, scientists hope ultimately to devise ways to tinker with them for therapeutic purposes.  Please check out the rest of the story on National Insitute of General Medical Science’s BioBeat.

Proteins Pull Together As Cells Divide: Group dynamics, not star proteins, drive mechanics of crucial cell process

Like a surgeon separating conjoined twins, cells have to be careful to get everything just right when they divide in two. Otherwise, the resulting daughter cells could be hobbled, particularly if they end up with too many or two few chromosomes. Successful cell division hangs on the formation of a dip called a cleavage furrow, a process that has remained mysterious. Now, researchers at Johns Hopkins have found that no single molecular architect directs the cleavage furrow’s formation; rather, it is a robust structure made of a suite of team players. This work appeared online in Current Biology on February 19, 2015.  Please click here for the rest of the story.

Under Pressure: Mechanical stress is a key driver of cell-cell fusion, study finds

Just as human relationships are a two-way street, fusion between cells requires two active partners: one to send protrusions into its neighbor, and one to hold its ground and help complete the process.  Researchers have now found that one way the receiving cell plays its role is by having a key structural protein come running in response to pressure on the cell membrane, rather than waiting for chemical signals to tell it that it’s needed. The study, which helps open the curtain on a process relevant to muscle formation and regeneration, fertilization, and immune response, appears in the March 9 (2015) issue of the journal Developmental Cell.  Please click here for the rest of the story.

Stiffening Up Cancer Cells

A new screen uncovers compounds that alter cell mechanics. Could these compounds someday treat cancer from an unexpected angle? Find out by reading the story in Biotechniques.

New Cancer-Fighting Strategy Would Harden Cells to Prevent Metastasis

Existing cancer therapies are geared toward massacring tumor cells, but Johns Hopkins researchers propose a different strategy: subtly hardening cancer cells to prevent them from invading new areas of the body. They devised a way of screening compounds for the desired effect and have identified a compound that shows promise in fighting pancreatic cancer. Their study appeared January 20, 2015 in the early edition of the Proceedings of the National Academy of Sciences.  Please click here for the rest of the story.  

My Lab’s Commitment to Diversity, Equity, and Inclusion may be found in this document: Robinson Lab DEI Statement

My Lab’s Training Outcomes:

A new coalition of 9 top universities and an institute calls for transparency in the outcomes and demographics of every institution’s training programs (here is the Science Magazine writeup).  We do not need a mandate to provide that information.  Here are my lab’s trainee outcomes and demographics:

To date, 80 members have passed through our lab, including 17 doctoral students (5 current), 6 postdoctoral fellows, 1 clinical fellow, 23 undergraduate and medical students, 7 technicians, 3 Art as Applied to Medicine masters students, and 25 outreach and high school students.  Two students spent summers as undergrads in the lab then returned for their doctoral training.  The 80 includes 51 (64%) women and 21 (26%) Underrepresented in Science (UIS) or Medicine (UIM).  We have also had 5 visiting scientists spend extended periods of time in the lab.

My doctoral students complete their degrees in an average of 5.6 years (median 5.3 years) and produce an average of 6.7 papers (range 3-12; mean of 2.8 first author).  My postdoctoral fellows have completed in an average of 4.2 years (median 2.5 years) and produced an average of 5.3 papers (range 1-13; mean of 2.2 first author). 

Example career outcomes of my doctoral and postdoctoral trainees include tenure track faculty (42% of postdocs, approximately 3-times the national rate), science writing, patent law, FDA reviewing, and scientists in biotech (e.g. Abbvie, Genentech, and SocialCode).

My undergraduates have gone on to medical school (in one case with a $120,000 scholarship to U. Pittsburgh based on his work in my lab), graduate school (e.g. Northwestern, UC Berkeley, UNC Chapel Hill), and MSTP programs (e.g. Cornell-Rockefeller).  In two cases, my summer undergraduate students (one through the Summer Internship Program (SIP) and one (a UIS) from the Research Experience for Undergraduates (REU)) returned to my lab for their doctoral studies.

My high school students have all moved on to college, including students from low-income, educationally under-resourced backgrounds (many of whom are pursuing STEM or health-related degrees) that have come through my lab’s Summer Academic Research Experience (SARE) program (Kabacoff et al. CBE Life Sci. Educ. 2013; http://sare.cellbio.jhmi.edu). Please note that SARE itself has now served 105 high school scholars. 92% of those who have reached college age are confirmed to have matriculated into community college or 4-year college programs, and 71% have chosen STEM majors.  SARE also has nearly a 54% college completion rate by four years post high school graduation (68% with degrees in STEM and medical science-related fields).  A 70% completion rate by six years post high school graduation is likely, which compares quite favorably to the 14% national average for students from low-income, educationally under-resourced backgrounds. From SARE, we created the Johns Hopkins Initiative for Careers in Science and Medicine (CSM). The CSM includes stage-appropriate programs for 5th grade, high school, undergraduate, and post-baccalaureate scholars.  To date, more than 520 scholars have participated in the CSM, and our scholars are pursuing a wide range of STEMM (Science, Technology, Engineering, Mathematics, and Medical sciences) all over the country.    

Highlighted Research

To see the world in a dividing cell

The central goal of our research is to discern fundamental principles of cell shape control and then to apply this knowledge to a variety of disease states.  Importantly, numerous diseases, including most cancers and lung diseases such as chronic obstructive pulmonary disease (COPD), derive a…

Recent News

Jan 27

Hoku defends his thesis entitled Regulation of Non-muscle Myosin II.  Congratulations, Dr. West-Foyle!...... Read More

Feb 28

Congratulations to Tianzhi Luo, new Assistant Professor at the University of Science and Technology of China. Way to go, Tianzhi!...... Read More

Highlighted Research

Molecular Mechanisms of Cellular Mechanosensing

Among the earliest inputs that cells experienced, mechanical stress (forces) guide and direct behavior of cells, including when they are part of tissues, organs, and organ systems.  These mechanical stresses are propagated through the cell’s skin (the cell cortex), which is a composite material of…