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ABSTRACT Cell shape change processes, such as proliferation, polarization, migration, and cancer metastasis, rely on a dy-
namic network of macromolecules. The proper function of this network enables mechanosensation, the ability of cells to sense
and respond to mechanical cues. Myosin II and cortexillin I, critical elements of the cellular mechanosensory machinery, preas-
semble in the cytoplasm of Dictyostelium cells into complexes that we have termed contractility kits (CKs). Two IQGAP proteins
then differentially regulate the mechanoresponsiveness of the cortexillin I-myosin II elements within CKs. To investigate the
mechanism of CK self-assembly and gain insight into possible molecular means for IQGAP regulation, we developed a
coarse-grained excluded volumemolecular model in which all protein polymers are represented by nm-sized spheres connected
by spring-like links. The model is parameterized using experimentally measured parameters acquired through fluorescence
cross-correlation spectroscopy and fluorescence correlation spectroscopy, which describe the interaction affinities and diffusion
coefficients for individual molecular components, and which have also been validated via several orthogonal methods. Simula-
tions of wild-type and null-mutant conditions implied that the temporal order of assembly of these kits is dominated by myosin II
dimer formation and that IQGAP proteins mediate cluster growth. In addition, our simulations predicted the existence of ‘‘ambig-
uous’’ CKs that incorporate both classes of IQGAPs, and we confirmed this experimentally using fluorescence cross-correlation
spectroscopy. The model serves to describe the formation of the CKs and how their assembly enables and regulates
mechanosensation at the molecular level.
SIGNIFICANCE To survive, cells must sense and respond to mechanical stimuli. Experiments have demonstrated that
macromolecular assemblies, termed contractility kits, are preassembled, and used by cells to respond to these mechanical
signals. The precise mechanism of assembly, however, is unknown. In this work we use stochastic, spatial simulations to
determine the means of assembly of these kits. The simulations show that the temporal order of assembly of these kits is
dominated by myosin II dimer formation. Moreover, simulations predict the existence of a previously unknown type of kit.
In vivo experiments were then performed and confirmed this prediction. This work elucidates the mechanism by which an
important component of the cell’s mechanosensory machinery is formed.
INTRODUCTION

To survive in dynamic environments, cells must sense inter-
nal and external cues and respond to those changes. They
achieve this through a meshwork of macromolecules that
act as sensors and actuators, allowing cells to detect and
react to biochemical and mechanical stimuli, apply forces,
and undergo shape changes. This meshwork of macromole-
cules, which we refer to as the mechanobiome, allows cells
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to carry out mechanosensation, affecting cell characteristics
such as elasticity and viscoelasticity, and enabling the
execution of basic cellular processes. Investigating cellular
mechanosensitivity and the mechanobiome at the molecular
scale allows us to gain further insight into the molecular de-
tails enabling basic processes, such as proliferation, polari-
zation, and cancer cell migration and metastasis.

In Dictyostelium cells, myosin II and cortexillin I are crit-
ical elements of the mechanobiome, with myosin II acting to
stiffen the cell cortex and generate a contractile response to
mechanical stress, while the actin cross-linker cortexillin I
cross-links actin filaments and anchors them to the plasma
membrane (1–3). Myosin II and cortexillin I have been
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discovered to be codependent in their ability to generate a
mechanical response (4,5) and preassemble into complexes,
which we refer to as contractility kits (CKs), in the cyto-
plasm before the reception of a mechanical stimulus. These
kits are hypothesized to be the means by which mechano-
sensitive contractile proteins arrive at the cortex through
diffusion. Then, if their arrival at the cortex is associated
with additional inputs, such as a mechanical stress, the
kits may be unpackaged so that the proteins may be incorpo-
rated into larger-scale cytoskeletal structures, building
additional cortical cytoskeleton.

Other critical subunits in the CKs are the IQGAP pro-
teins, particularly IQGAP1 and IQGAP2 (6). IQGAP1
serves as a negative regulator of the CKs, inhibiting the
ability of myosin II and cortexillin I to accumulate in the
cell cortex in response to applied mechanical stresses.
IQGAP2, on the other hand, alleviates IQGAP1’s inhibition.
When both IQGAPs are removed via genetic deletion,
myosin II and cortexillin I can again accumulate in response
to mechanical stress (6). Overall, the IQGAPs help provide a
set point for mechanical stress sensing and responsiveness.

By being preassembled, the CKs poise the cell for a quick
response to any encountered signal (2). Despite the extent of
previous studies on cellular mechanosensing (7), much re-
mains unknown about how the individual elements of the
cortical network interact and regulate each other to mediate
mechanosensation at the molecular scale, particularly
regarding the CKs. The overarching goal of this research
is to decipher the mechanisms of cytoskeletal systems that
enable mechanosensation and shape change processes,
particularly how mechanoresponsive myosin II-cortexillin
I units enable mechanosensation in the context of CKs
through the development of predictive computational
models. To this end, we have constructed a coarse-grained
excluded volume molecular model to investigate the self-as-
sembly process of these kits in the absence of mechanical
stress and gain further insight into how these kits may
enable and regulate mechanosensation at a cellular scale.
FIGURE 1 Coarse-grained description of the molecular components in

the model. (A) In SpringSaLaD, each molecule is described by constituent

domains. The size and diffusion coefficient of each domain is found in

Table 1, which also lists the binding partners of the various domains. (B)

This shows how small-scale myosin II bipolar thick filament assembly pro-

ceeds. Parallel binding of two functional monomers through the dimeriza-

tion domains (MyoIID1-MyoIID5) induces a change in the state of these

domains and a corresponding allosteric transformation in the tetrameriza-

tion domains (MyoIIT1-MyoIIT5). In this new state, dimers come together

by antiparallel binding (MyoIIT1 in one dimer to MyoIIT5 in the other,

etc.) to form a tetramer. The addition of further dimers can occur and

lead to hexamers or higher-order assemblies. To see this figure in color,

go online.
METHODS

Coarse-grained molecular modeling

To create a coarse-grained excluded volume molecular model of CK self-

assembly, we used the software SpringSaLaD (8). In SpringSaLaD, mole-

cules are represented as nm-sized domains connected by spring-like links,

we thus refer to this model as a coarse-grained molecular model (as

opposed to an atomistic model). Each domain is given a radius and diffusion

coefficient in mm2 s�1 and can be specified to undergo transition, allosteric,

and bimolecular reactions. Simulations in SpringSaLaD are based upon im-

plementation of the Erban-Chapman algorithm (9). Alternative particle-

based reaction-diffusion simulation techniques are based upon Green’s

functions methods (10). For the readers interested in further details of the

particle-based reaction-diffusion simulation methods, we refer them to

(9–13).

Below we describe the various components included in the model, their

coarse grain description, and the various binding and allosteric reactions

involved. A schematic of the various molecules is provided in Fig. 1 A;
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details of the various domains are given in Table 1, and Table 2 lists the rele-

vant reactions.

Cortexillin I

Cortexillin I is composed of two globular N-terminal calponin homology

(CH) domains, followed by 18 continuous heptad repeats that dimerize to

form a parallel two-stranded coiled coil, and two globular C-terminal

actin/PIP2 binding domains (14). The functional unit of cortexillin is thus

an obligate coiled-coil dimer. Within our model, we consider this coiled-

coil dimer to be a single cortexillin I molecule (functional monomer)

(Fig. 1 A; Table 1). Our coarse-grained cortexillin I monomer thus contains

a total of four globular domains, each with a diameter of 2 nm, correspond-

ing to the CH domains and C-terminal actin-binding domains, connected by



TABLE 1 Molecule coarse graining

Molecule Components No. Label Binding partner(s) Radius (nm) D (mm2/s) PDB

Cortexillin I IQGAP binding 1 CortIQA IQGAP1C, IQGAP2C 1.0 23.2 1D7M

IQGAP binding 1 CortIQB IQGAP1C 1.0 23.2

lipid binding 1 CortIL PIP2H 1.0 23.2

myosin binding 1 CortIM MyoIIC 1.0 23.2

coiled-coil length 14.46

Myosin II head 2 MyoIIH none 2.5 14.55 3BZ7

IQGAP binding 1 MyoIIQA IQGAP1M, IQGAP2M 1.0 14.55

IQGAP binding 1 MyoIIQB IQGAP1M 1.0 14.55

cortexillin binding 1 MyoIIC CortIM 1.0 14.55

tail dimerization 5 MyoIID1-D5 MyoIID1-D5 0.7 14.55

tail tetramerization 5 MyoIIT1-T5 MyoIIT5-T1 0.7 14.55

IQGAP1 myosin binding 1 IQGAP1M MyoIIQA, MyoIIQB 1.225 9.6

cortexillin binding 1 IQGAP1C CortIQA, CortIQB 1.225 9.6

IQGAP2 myosin binding 1 IQGAP2M MyoIIQA 1.225 9.6 5CJP

cortexillin binding 1 IQGAP2C CortIQA 1.225 9.6 5CJP

PIP2 anchor 1 PIP2A membrane 0.3 1.0

headgroup 1 PIP2H CortIL 0.5 1.0

Biochemical species are described through individual components that are joined by spring-like links. The table specifies the size and number of the various

constitutive components. The labels serve to indicate their position in Fig. 1 A as well as in the various reactions of Table 2. Also indicated are the domains

and their potential binding partners. Diffusion coefficients for given domains were computed using the Rouse diffusion relationship as in Fig. 2 B. Wherever

available, the PDB codes represent structures of protein domains, for which the radius of gyration or length was measured as a form of estimating the radius or

length assigned to the corresponding coarse-grained protein domain.
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two parallel springs 14.46 nm long representing the coiled-coil rod domain

of cortexillin I (3,14). The size of cortexillin I globular domains was esti-

mated by subtracting the length of the coiled coil (PDB: 1D7M) from the

length of the total protein (3,14). In our model, binding of proteins to cor-

texillin occurs at these four globular domains. IQGAP binding occurs at

sites CortIQA and CortIQB, located at opposite sides of the molecule

(Fig. 1 A). Cortexillin I-lipid binding takes place between cortexillin’s lipid

binding domain (CortIL) and the lipid head domain (PIP2H, described

below). Cortexillin I-myosin II binding occurs at the cortexillin I myosin-

binding domain (CortIM). To restrict IQGAP binding to cortexillin I, such

that the observed stoichiometric ratios are maintained, IQGAPs have

been modeled to have a relationship of allosteric competitive inhibition.

In SpringSaLaD, allosteric changes are specified via binding-dependent

transition reactions that are coupled to subsequent allosteric reactions (Ta-

ble 2) (8). In this model, we assume that cortexillin I has two IQGAP-bind-

ing sites and that the primary binding site (CortIQA) is available to both

IQGAPs, while the second (CortIQB) is only available to IQGAP1. Thus,

both IQGAPs compete for the cortexillin I primary binding site. The bind-

ing of IQGAP2 to CortIQA causes a binding-dependent transition reaction

that changes the state of this domain from state0 (basal) to the allosteri-

c_reg state. If CortIQA is in the allosteric_reg state, then the secondary

site undergoes an allosteric state change (modeled through an allosteric re-

action) from state0 to the allosteric_reg state, which inhibits binding of an

IQGAP1 molecule to CortIQB, thus maintaining IQGAP stoichiometry.

IQGAPs

IQGAPs are scaffolding proteins, known to regulate cytoskeletal dynamics

and shape changes. In mammals, IQGAP proteins contain a total of five do-

mains: a calponin-homology domain, an IQ domain, aWW domain, a GAP-

related domain (GRD) domain, and a RasGAP-related C-terminus (RGCT)

domain (15). However, the Dictyostelium versions only contain the GRD

and RGCT domains (15–17). We have assumed that IQGAP1 is analogous

in size to IQGAP2 and have used an available structure of human IQGAP2

(PDB: 5CJP) to measure the radius of gyration of the molecule, which we

have used as a reference for the total molecular radius given during our

model’s IQGAP coarse graining. In this model, we represent IQGAPs as

globular proteins composed of two spherical domains each: one myosin

II-binding domain (IQGAP1M and IQGAP2M, respectively) and one cortex-

illin I-binding domain (IQGAP1C and IQGAP2C, respectively) each with a
radius of 1.225 nm, leading to a total protein lateral diameter of �5 nm

(Fig. 1 A).

Myosin II

In the present model, we consider a myosin molecule to be a hexameric

myosin II monomer (functional monomer). Each nonmuscle myosin II hex-

americ monomer is composed of two myosin II heavy chains, two essential

light chains (ELCs), and two regulatory light chains (RLCs) (18). Each

myosin heavy chain is composed of an N-terminal head domain, a neck re-

gion that binds one ELC and one RLC, followed by a long alpha helix that

forms the coiled-coil rod domain of the tail (19). We thus modeled our

coarse-grained myosin II molecule to have two head domains (MyoIIH),

each with a radius of 2.5 nm (Table 1; PDB: 3BZ7), and a tail region

composed of dimerization (MyoIID1-MyoIID5) and tetramerization domains

(MyoIIT1-MyoIIT5) (Fig. 1 A). The number of domains for the myosin

tail was selected based upon reference (20), where five patches of highly

clustered positive and negative charge regions were hypothesized to

mediate the contacts that allow for dimerization and tetramerization,

leading to BTF formation. These dimerization and tetramerization domains

were assumed to have an approximate radius of 0.7 nm (Table 1). Although

the actual myosin II coiled coil is 190 nm long, we used a shortened

version that is 50 nm long to make the coarse-grained simulation of this

self-assembly system feasible, thus making the total end-to-end length

�60 nm (Fig. 1 A).

IQGAP-myosin II binding happens at the myosin IQGAP-binding do-

mains: MyoIIQA (primary) and MyoIIQB (secondary). As there are currently

no data on IQGAP-myosin stoichiometry, we assumed a 2:1 IQGAP1:myo-

sin II stoichiometry and a 1:1 IQGAP2:myosin stoichiometry, analogous to

cortexillin I. Also, similarly to cortexillin I, we have implemented a rela-

tionship of allosteric competitive inhibition between the IQGAPs, once

again enforced through the implementation of coupled transition and allo-

steric reactions in the same manner as described for cortexillin I above.

Myosin II-cortexillin I binding occurs at the myosin MyoIIC domain

(Fig. 1 A).

Myosin functional monomers can form parallel dimers via binding of

equally numbered dimerization domains (i.e., MyoIID1 of one monomer

binds to MyoIID1 of the other, etc.; see Fig. 1 B). Myosin tetramerization

domains can only undergo the tetramerization reaction creating the initial

bipolar filament when the molecules have formed parallel dimers. We
Biophysical Journal 121, 1–15, December 6, 2022 3



TABLE 2 Reactions implemented in the coarse-grained model of CK assembly

Reaction pair

Binding reactions

CortIQA þ IQGAP1C # IQGAP1:CortI

CortIQA þ IQGAP2C # IQGAP2:CortI A1f, A1r

CortIQB þ IQGAP1C # CortI:IQGAP1

CortILþ PIP2H # CortI:PIP2

CortIM þ MyoIIC # CortI:MyoII

MyoIIQA þ IQGAP1M # IQGAP1:MyoII

MyoIIQA þ IQGAP2M # IQGAP2:MyoII B1f, B1r

MyoIIQB þ IQGAP1M # IQGAP1:MyoII

MyoIIDk þ MyoIIDk, k ¼ 1;.;5 # (MyoIIdimer)Dk C1f, C1r

(MyoIIdimer)Tk þ (MyoIIdimer)Tm, kþ m ¼ 6 # (MyoIItetramer)Tk,m
(MyoIItetramer)Tk þ (MyoIIdimer)Tm, kþ m ¼ 6 # (MyoIIhexamer)Tk,m

Transition reactions

A1f: / IQGAP2:CortI (CortIQA)-state0 / (CortIQA)-allosteric_reg A2f

B1f: / IQGAP2:MyoII (MyoIIQA)-state0 / (MyoIIQA)-allosteric_reg B2f

C1f: / (MyoIIdimer)Dk ((MyoIIdimer)Dk)-state0 / ((MyoIIdimer)Dk)-tetra C2f

A1r: ) IQGAP2:CortI (CortIQA)-allosteric_reg / (CortIQA)-state0 A2r

B1r: ) IQGAP2:MyoII (MyoIIQA)-allosteric_reg / (MyoIIQA)-state0 B2r

C1r: ) (MyoIIdimer)Dk ((MyoIIdimer)Dk)-tetra / ((MyoIIdimer)Dk)-state0 C2r

Allosteric reactions

A2f: (CortIQA)-allosteric_reg (CortIQB)-state0 / (CortIQB)-allosteric_reg
B2f: (MyoIIQA)-allosteric_reg (MyoIIQB)-state0 / (MyoIIQB)-allosteric_reg
C2f: ((MyoIIdimer)Dk)-tetra ((MyoIIdimer)Tk)-state0 / ((MyoIIdimer)Tk)-tetra
A2r: (CortIQA)-state0 (CortIQB)-allosteric_reg / (CortIQB)-state0
B2r: (MyoIIQA)-state0 (MyoIIQB)-allosteric_reg / (MyoIIQB)-state0
C2r: ((MyoIIdimer)Dk)-state0 ((MyoIIdimer)Tk)-tetra / ((MyoIIdimer)Tk)-state0

Bimolecular binding reactions occur between specified pairs of domains (Table 1 and Fig. 1 A). Myosin II dimerization occurs between five pairs of domains

along the myosin II tail, while tetramerization occurs between five pairs of tetramerization domains also along the tail, given that the molecule has already

formed a parallel dimer (Fig. 1 B). The table lists only the bimolecular entities formed, but higher-order ensembles are formed when further domains bind.

Transition reactions specify a binding-dependent change in the state of a particular domain. Allosteric reactions specify a change in the state of a particular

domain, given that there has been a change in the state of the indicated allosteric site. The reaction pair column indicates the dependency of transition

and allosteric reactions on given binding reactions. For example, binding of CortIQA with IQGAP2C leads to the transition reaction, A1f, which then

leads to an allosteric transition, A2f, in the CortIQB domain. The reverse unbinding reactions similarly cause a sequential change in states; e.g., A1r triggers

A2r, which then leads to an allosteric reaction. Dependencies for transition and allosteric reactions are also listed on the left-hand side of the described

reactions.
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incorporated this tetramerization within our SpringSaLaDmodel via a bind-

ing-dependent transition reaction. The binding of dimerization domains

causes a change from the basal state0 to the tetramerization_state (Table 2).

This state change in the dimerization domains induces an allosteric state

change (specified through an allosteric reaction) in the corresponding tetra-

merization domains (i.e., MyoIID1 induces a change in MyoIIT1) from

state0 to tetramerization_state. When in this latter state, two dimers are

able to tetramerize via antiparallel binding of the tetramerization domains

in a subsequent binding reaction (i.e., MyoIIT1 of one monomer to

MyoIIT5 of the other, etc.) (Table 2). koff rate constants for dimerization

and tetramerization reactions were obtained as explained in supporting deri-

vation 1.

PIP2

Lipid bilayers are typically �3–4 nm thick, thus a monolayer can range

from 1.5 to 2 nm in thickness (21). In the model, we included mem-

brane-bound lipid molecules that can diffuse two-dimensionally along a

plane. These PIP2 lipids are represented as membrane-bound molecules

with an anchor (PIP2A) and head (PIP2H) domain. Cortexillin I binding oc-

curs at the PIP2H domain. We have attributed the PIP2 lipid heads in our

model a radius of 0.5 nm such that they are visible within simulation movies

(Video S1). The anchor domain has a radius of 0.3 nm. This leads to a total
4 Biophysical Journal 121, 1–15, December 6, 2022
monolayer thickness of 1.6 nm. Lipid binding is only allowed on the mono-

layer side facing the inner portion of the simulation box, where other pro-

teins can diffuse in three dimensions.

SpringSaLaD requires that rate constants be input into the simulation soft-

ware for all bimolecular binding, transition, and allosteric reactions (8). In

the case of bimolecular binding reactions, kon and koff rate constants are pa-

rameters that must be input into the simulation software and give rise to an

effective interaction affinity (KD ¼ koff=kon). Experiments performed by

Kothari et al. (1) provided effective interaction affinities for all bimolecular

protein-protein interactions considered in this model. However, the specific

rate constants for these protein-protein binding reactions have not been

measured experimentally. We assumed a forward bimolecular reaction rate

(kon) of 2 mM
�1s �1 (22) and solved for the reverse rate constants (koff ) cor-

responding to each binding reaction using koff ¼ KD � kon (Table S1). A

sensitivity analysis was carried out to determine how kon affected assembly

dynamics and confirmed that the steady-state (arrived at t ¼ 1.5 s) fraction

bound for each protein pair was not affected (Figs. S1 and S2; Table S2).

IQGAP1 binds cortexillin I with a 2:1 stoichiometric ratio, while

IQGAP2 binds cortexillin I with a 1:1 stoichiometric ratio (1). To restrict

IQGAP binding to cortexillin I, such that the observed stoichiometric ratios

are maintained, IQGAPs have been modeled to have a relationship of

allosteric competitive inhibition as described in the cortexillin I and myosin

II sections above. In this model, we assume that cortexillin I has two
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IQGAP-binding sites and that the primary binding site is available to both

IQGAPs, while the second is only available to IQGAP1. Thus, both

IQGAPs compete for the cortexillin I primary binding site (‘‘competitive in-

hibition’’). The allostery lies in the fact that, if IQGAP2 binds to the primary

binding site, then IQGAP1 cannot bind to the secondary binding site. A

sensitivity analysis was also conducted, observing the effect of this assumed

stoichiometry on CK IQGAP1:IQGAP2 ratio (Fig. S1).

All transition and allosteric reactions in the model were assumed to have

reaction rates of 1000 s�1 (kon ¼ koff ¼ 1000 s� 1), resulting in a fast

occurrence in comparison with the rates of the specified binding reactions.

Molecule concentrations in model simulations were chosen to approximate

the biological concentrations measured by Kothari et al. (1) (Table 3). The

cortexillin I-PIP2 binding reaction was assumed to have a KD of 1mM (kon ¼
1828 mM�1 s�1, koff ¼ 1828 s�1) since the affinity of the interaction has not

been measured experimentally.
Model assumptions and limitations

Our motivation is to use a computational model to gain insight into the

mechanism by which CKs assemble. While there is considerable experi-

mental information available regarding some of the interactions, several as-

sumptions need to be made. As explained above, the relationship between

IQGAPs is hypothesized to be one of allosteric competitive inhibition and is

modeled as such.

In these simulations, the binding location for IQGAP-myosin II interac-

tions is modeled to occur between the tail and head domains, although

structures of these bound complexes have not been discerned. For

IQGAP-cortexillin interactions, we assumed binding to occur at the CH do-

mains of cortexillin I (structures of these bound complexes have also not

been discerned). An inherent limitation of this modeling approach is that

protein molecules are depicted at the level of nm-sized spheres representing

protein domains, joined by spring-like links, therefore the level of structural

detail is limited and residue-level contacts are not included, but rather bind-

ing interactions are represented at the level of domain contacts between

proteins.

We also assumed that the IQGAP1:myosin II binding stoichiometry is

2:1, but the stoichiometry of this interaction has not been experimentally

measured. We have therefore assumed that the stoichiometry of IQGAP1:

myosin II is analogous to that of IQGAP1:cortexillin I. We conducted an

analysis of CK cluster IQGAP ratios where binding of IQGAP1 to the sec-

ondary site in myosin II has been disabled (thus making the IQGAP1:myo-

sin II stoichiometry in the model 1:1). The analysis revealed some minor

differences in the IQGAP1:IQGAP2 ratios of the clusters (Fig. S1).

When comparing the original model (exhibiting 2:1 IQGAP1:myosin II

binding stoichiometry) to the 1:1 IQGAP1:myosin II stoichiometry model,

the 2:1 IQGAP1:IQGAP2 ratio in ambiguous CKs decreased from 59

to 36%, while the 1:1 IQGAP1:IQGAP2 ratio increased from 7 to 36%.

We note that these percentages are calculated relative to the total number

of ambiguous clusters. These results show a slight shift in the relative

distributions of IQGAPs within the clusters stemming from the change in

stoichiometry between IQGAP1:myosin II; however, no significant
TABLE 3 Molecular concentrations implemented in coarse-

grained simulations of CK assembly

Molecule Concentration (mM)

Cortexillin I 3.53

IQGAP1 3.74

IQGAP2 5.19

PIP2 33.1

Myosin II 3.74

Protein concentrations are based upon FCS measurements (1). Molecular

concentrations were maintained constant in all simulations of CK self-as-

sembly.
change in the number of clusters or average cluster size was observed.

Sensitivity analysis was also conducted on the kon rates (Figs. S2 and S3;

Table S2).
Mean-squared displacement diffusion coefficient
analysis

To validate molecular diffusion coefficients implemented in

SpringSaLaD, polymers of various lengths, ranging from one monomeric

unit (monomer) up to 20-mer, were constructed. Each monomeric unit

consisted of a 2.8 nm radius sphere and a diffusion coefficient of 25

mm2 s�1. Simulations were run at a volume fraction (the fraction of

total volume occupied by all molecules) less than or equal to

4 ¼ ðVmolNÞ=Vbox ¼ 10� 5 , where Vmol represents the excluded volume

occupied by the molecule(s) represented in the simulation and Vbox

represents the total volume of the simulation box, thus allowing us

to consider this a system of noninteracting particles. The squared

deviation was calculated for each individual molecule in the simulation

using the initial center of mass as reference via: d2 ¼
ðx0 � xiÞ2 þ ðy0 � yiÞ2 þ ðz0 � ziÞ2, where (x0; y0; z0Þ is the center

of mass for the molecule at t ¼ 0 and (xi; yi; ziÞ is the center of mass

at time t ¼ i. To obtain the diffusion coefficients, we first calculated

the mean-squared displacement (MSD) of the center of mass for each in-

dividual molecule along a single trajectory. We then averaged the

squared displacements over all the trajectories of this molecule type to

obtain the MSD (r2) as a function of time and then carried out a

nonlinear least-squares fit to Einstein’s formula for three-dimensional

(3D) diffusion, Cr2D ¼ 6Dt. This MSD analysis procedure was also

used to corroborate that the CK component proteins modeled in

SpringSaLaD were complying with experimentally measured diffusion

coefficients (Table S3).
Fractional saturation analysis

To validate intermolecular interaction affinities implemented in

SpringSaLaD, two simplemonomericmolecules (A andB)were considered,

each with a radius of 2.8 nm and a diffusion coefficient of 25 mm2 s�1. The

molecules undergo a simple bimolecular binding reaction Aþ B!C with

forward and reverse rate constants kon ¼ 2 mM�1 s�1 and koff ¼ 1 s�1,

respectively, resulting in a KD ¼ 0:5 mM. A fractional saturation curve

was then constructed using this model by running ten replicate simulations

at various B ligand concentrations (0.2–25 mM)while keeping theA concen-

tration constant (3.5 mM; equal to 17 molecules within the simulation vol-

ume). Simulations were run in a cube of 200 nm on each side for 250 ms

of simulation timewith a time step of 10 ns (dt¼ 10�8 s) and data acquisition

time step of 0.1ms (dtdata ¼ 10�4 s). For each simulation, the total fraction of

A bound by B was calculated and used to compute the average total fraction

of A bound at each B concentration, along with the standard deviation. The

total fraction of A bound was obtained using the Site Property Counter pro-

vided by SpringSaLaD, which indicates the number of bound A molecules,

and dividing by the total number of A molecules added into the simulation.

The average fractional saturation data was then fit to a model for a bimolec-

ular binding reaction with 1:1 stoichiometry given by:

q ¼ Atot þ BtotþKD �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAtot þ Btot þ KDÞ2 � 4AtotBtot

q
2Atot

(1)

using nonlinear least-squares fit. This fractional saturation procedure was

also implemented to ensure that CK component proteins modeled in

SpringSaLaD were complying with experimentally measured effective

interaction affinities (Table S4).
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Computational fluorescence correlation and
fluorescence cross correlation analysis

To recreate fluorescence correlation (FCS) computationally, an effectivevol-

ume of (100 nm)3 at the center of the simulation box (centered around zero)

was selected and center-of-mass calculations were carried out for all mole-

cules at each time point in the simulation. This allowed us to track the con-

centration fluctuations for the various molecule types as they diffused in and

out of the effective volume. We computed the corresponding proportional

fluorescence fluctuations using dFðtÞ ¼ R
hWðrÞdðCðr; tÞÞdV, where

WðrÞ describes the spatial distribution of the emitted light, which we

assumed to be a 3D Gaussian illumination fluorescence profile, h is the

photon count rate, and dV indicates integration over the effective volume.

A photon count rate h of 125MHzwas used, in accordancewith experiments

(1). The function dðCðr; tÞÞ ¼ CCD � Cðr; tÞ describes the concentration

fluctuations from the temporal average. Using the fluorescence fluctuation

data for each molecule type, we computed the normalized autocorrelation

of the emulated fluorescence signal as GðtÞ ¼ CdFðtÞ dFðtþtÞD
CFðtÞD2 . We then

fit the computationally emulated fluorescence autocorrelation data to the

integrated form of the autocorrelation function for single-species 3D diffu-

sion ðtÞ ¼ 1
N

�
1þ 1

tD

�� 1�
1þ 1

u2tD

�� 1=2

, where N represents the concen-

tration of molecules, u is the structural parameter (ratio of axial and

lateral beamwidths), and tD is the diffusion time (23).A structural parameter

of u ¼ 1 was used for all computations (24). Fitting the fluorescence

autocorrelation data to the integrated autocorrelation function for single-

species 3D diffusion allowed us to extract the diffusion time for that partic-

ular molecule (or for diffusing CKs), from which we then calculated the

diffusion coefficient for such a molecule using the relationship tD ¼ z2
0

6D ,

where z0 represents the axial beam width parameter, set at 100 nm in all

simulations.

Using this same fluorescence emulation procedure, we also computed the

cross correlation between the fluorescence signals describing two distinct

molecules to recreate fluorescence cross correlation spectroscopy (FCCS)

computationally and gain information about effective interaction affinities

between two pairs of molecules within clusters. In this case, we computed

the normalized cross correlation of the emulated fluorescence signals as

GxðtÞ ¼ dF1ðtÞ dF2ðtþtÞ
FðtÞ1F2ðtÞ , where dF1 and dF2 represent the fluorescence fluc-

tuations of the first and second molecules, respectively. We then computed

an effective interaction affinity through the relationship:

KD ¼ Gx

NA V Ga Gb

�
Ga

Gx

� 1

��
Gb

Gx

� 1

�
(2)

where Gx represents the zero lag-time value for the cross correlation of the

two fluorescence signals,Ga represents the zero lag-time value for the auto-

correlation of the first fluorescence signal molecule, Gb is the zero lag-time

value of the autocorrelation for the second molecule’s fluorescence signal,

NA is Avogadro’s number, and V ¼ (100 nm)3 is the effective volume (1).
CK identification and classification algorithm

We developed an algorithm to quantify the clusters that can be identified as

CKs to characterize their composition and track their localization (cyto-

plasmic versus membrane bound). Here, to be considered a CK, a cluster

must contain at least one myosin II, one cortexillin I, and one IQGAP mole-

cule (1). Once identified, CKs were then classified into nonmechanorespon-

sive (containing IQGAP1 only), mechanoresponsive (containing IQGAP2

only), or ambiguous (containing both IQGAPs). In the case of classifying

clusters observed in an iqgap1/2 null scenario, clusters were considered

CKs if they had at least one myosin II and one cortexillin I molecule. Av-

erages were obtained from various independent replicates. The total size of

CKs at each time point was determined by the number of components as
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identified by the SpringSaLaD Cluster Tracker tool. CKs that contained

at least one PIP2 molecule were considered membrane bound, as this lipid

is restricted to the membrane; otherwise, they were considered cytoplasmic.

CKs were identified out of a total number of clusters in the simulation

using the Cluster Tracker tool provided by SpringSaLaD, which outputs

the total number of clusters composed of molecules bound via intermolec-

ular links.
Computation of simulations and analysis

All simulations were performed with SpringSaLaD, using dt ¼ 10� 8 s and

dtspring ¼ 10� 9 s (8). Simulations used for FCS and FCCS analysis were

performed using a dtdata ¼ 10� 5 s and dtimage ¼ 10� 5 s and run for a total

of 1.5–2 s of simulation time. Simulations used for CK classification and

cluster composition analysis were run for a total 150 ms or 1.5 s of simula-

tion time using dtdata ¼ dtimage ¼ 10� 2. Simulations used for generating

representative images of kits were run for a total of 150 ms of simulation

time using dtdata ¼ dtimage ¼ 10� 3 s. All analyses of simulation data

were carried out using Python and Python libraries, including Numpy,

Math, Pandas, and Seaborn.

A Kruskal-Wallis test was used to determine whether a statistically sig-

nificant difference existed among groups. A Kruskal-Wallis test yielding a

statistically significant difference (p < 0.05) was followed by a post-hoc

Mann-Whitney-Wilcoxon test.
Cell culture and in vivo FCCS

FCCS experiments were performed with an instrument setup as described

previously (1). Transformed Dictyostelium discoideum cells of the KAx3

background were cultured in Hans’ enriched HL-5 medium (1.4� HL-5

medium with 8% FM, penicillin, and streptomycin) containing 15 mg/mL

G418 and 40 mg/mL hygromycin (25). Cells were seeded on Lab-Tek II

8-chamber German coverglass system at�50–70% confluency and allowed

to adhere. Afterward, cells were imaged using a Zeiss AxioObserver with

780-Quasar confocal module microscope, equipped with a C-Apochromat

40� (NA 1.2) water objective. Rhodamine 6G (100 nM) was used for

Z-plane determination, laser power calibration, and pinhole alignment.

Cells with high fluorescence signal intensity were not selected for measure-

ment to avoid fluorophore saturation. Fluorescence intensity data of two flu-

orophores are fitted to a single-component 3D diffusion model with a

triplet-state component. The in vivo KD values were calculated using Eq.

2 with Ga and Gb the autocorrelations for mCherry and GFP, respectively,

and Gx the cross correlation of two fluorophores.
RESULTS

Validation of diffusion and binding

To elucidate the mechanisms of CK self-assembly at the
molecular level, we constructed a coarse-grained excluded
volume model using SpringSaLaD (Methods). Although
diffusion coefficients are measured experimentally on
a complete protein (26), diffusion coefficients in
SpringSaLaD are specified for each domain in a protein (Ta-
ble 1). Thus, to determine which coefficients to specify for
the individual domains in our model, we simulated the diffu-
sion of simple polymers of varying lengths ranging from a
single monomer unit to 20-mer. Twenty-five polymers
were placed in a (500 nm)3 cube, yielding an equivalent con-
centration of 0.332 mM, and diffusion was simulated for 10
ms. The relatively large simulation environment was chosen
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to minimize interactions between polymers. The center of
mass of each molecule was computed and used to calculate
the MSD for each molecule (across 6 simulations for a total
of 150 polymers) with reference to the initial position
(Methods).

As expected, plotting the average MSD against time re-
vealed a decrease in slope with increasing polymer size
(increasing number of monomeric units), which in turn cor-
responds to a decrease in diffusion coefficient with
increasing polymer size (Fig. 2 A). The polymers followed
a Rouse-like diffusion relationship (27) in which the diffu-
sion coefficient of the overall polymer is inversely propor-
tional to the number of monomeric units in the polymer
and directly proportional to the diffusion coefficient of the
monomer (Dpoly ¼ Dmono=N; Fig. 2 B). This relationship
was used to determine the necessary diffusion values for in-
dividual coarse-grained protein domains in the CK model to
reproduce experimentally measured diffusion coefficients
(Table 1).

Effective interaction affinities for reactions in
SpringSaLaD were validated via fractional saturation anal-
ysis (28). Fractional saturation analysis is a technique
commonly implemented to measure binding affinity be-
tween an enzyme or protein of interest and a known ligand
that binds to that molecule. In this procedure, the fraction of
enzyme or molecule bound is calculated under varying
ligand concentrations and used to construct a curve display-
ing the fraction of protein or enzyme bound versus added
ligand. Ten replicate simulations were run at varying B
ligand concentrations (0.2–25 mM) while keeping the A
concentration at a constant 3.5 mM. The simulation data
were then fit to a fractional saturation for a bimolecular
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FIGURE 2 Diffusion and bimolecular interaction affinities in SpringSaLaD. (A

replicates of 10 ms simulations were run for polymers of different sizes, ranging

MSD obtained from six replicate simulations run in a box (500 nm)3 at a concent

standard deviation of the MSD of all averaged particles. Dotted lines represent

Distribution of diffusion coefficients for each polymer size. Each colored dot rep

gray circles are the average diffusion coefficient for that particular size of polym

(Dpoly ¼ Dmono=N). (C) Fractional saturation curve for A þ B # C. The blue

obtained by averaging results from 10 replicate simulations run at each concentr

The red curve represents the result obtained from fitting a fractional saturation c

this figure in color, go online.
binding reaction with 1:1 stoichiometry (Eq. 1, Fig. 2 C).
The KD obtained from this fit was 0.604 mM, with a c2

goodness of fit value of 0.0231 and a p value of 0.9999,
indicating that no significant difference exists between
the simulation data and the fitted model equation. Thus,
these results indicate that SpringSaLaD effectively repro-
duces experimentally measured bimolecular interaction
affinities.
Simulating CK formation

Having validated the diffusion and binding terms, we
turned to creating a model of the CK elements and simu-
lating their formation. Coarse-grained molecules were rep-
resented in terms of nm-sized spherical domains connected
by spring-like links (Methods; Tables 1 and 2; Figs. 1 and
3). Once the detailed model was constructed, CK assembly
parameters were extracted, specifically diffusion coeffi-
cients for individual molecules and clusters and effective
bimolecular interaction affinities within clusters. To this
end, we used a computational implementation of FCS
(23,29–31) and FCCS (24,29,31) (Fig. 4, A and B). By
computationally emulating FCCS, we were able to repro-
duce the median and mean values for many of the bimolec-
ular interactions that lead to CK self-assembly (Fig. 4 C;
Table S5). The computational FCS procedure was applied
to simulations of individual molecules diffusing within a
box (Table S3), as well as simulations of CK self-assembly,
to obtain average estimates for diffusion coefficients of in-
dividual molecules and CKs, respectively. Overall, the me-
dian diffusion coefficients for CKs ranged from �0.4
to �0.8 mM�1 s �1 (Fig. 4 D), depending upon the
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FIGURE 3 Snapshots of contractility kit (CK)

elements and their formation in silico. (A)

Coarse-grained CK elements. Myosin II dimeriza-

tion domains are shown in green (right-hand

side), while tetramerization domains are shown

on the left-hand side of the myosin tail in pink.

All cortexillin domains are shown in cyan.

IQGAP1 and IQGAP2 are shown in purple and yel-

low, respectively. The size of the various domains

is given in Table 1 and illustrated in Fig. 1 A. (B–

D) Representative snapshots of CK assembly dur-

ing simulation. Membrane-bound CKs (PIP2 head

domain is in red) can be seen in (B and D). CKs

are observed to assemble within the cytoplasmic

area (C, this simulation is done in a rectangular

box with large z-dimension). In (D), three CKs

are circled. The bottom right CK is membrane

bound; the other two are cytosolic. Time lapse of

a representative simulation is available in Video

S1. To see this figure in color, go online.
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distribution of the molecule type that was tracked within
the clusters, as well as varying cluster sizes. Taking this
into account, we next investigated CK cluster composition
and localization.
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Simulations predict and experiments confirm the
existence of ambiguous CKs

Having confirmed that the model recreates the experimen-
tally measured parameters, we sought to determine how
GAP1-Cortexillin I
GAP2-Cortexillin I

me (s)
10-110-2 100

GAP2 MyoII

FIGURE 4 CK FCS and FCCS measurements.

(A) Computational FCS autocorrelation data

versus time for CK clusters containing cortexillin

I. Representative autocorrelation data produced

from a single simulation tracking cortexillin I in

CK clusters. (B) Computational FCCS cross corre-

lation data versus time for cortexillin I-IQGAP1

and cortexillin I-IQGAP2 interactions. Represen-

tative cross correlation data were produced from

a single simulation tracking cortexillin I-IQGAP

interactions within clusters. (C) Protein-protein

binding effective interaction affinities were ob-

tained by performing computational FCCS and

tracking molecule-type pairs within clusters. Data

for (C and D) were obtained from 11 replicate sim-

ulations in the presence of a 200 � 200 nm2 mem-

brane containing 33 mM PIP2 for 1.5 s. (D) Cluster

diffusion coefficients were obtained by performing

computational FCS and tracking individual mole-

cule types, thus providing an estimate for median

and average diffusion coefficients for clusters con-

taining that particular molecule type. Red bars

represent the median, and the boxes mark the

25th and 75th percentiles in (C and D). To see

this figure in color, go online.
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clusters are formed. In simulations of the complete system,
the cluster number and size reached a steady state within 1 s
of simulation time (Fig. 5 A). At steady state, we detected an
average of 6.13 5 0.78 CKs (mean 5 SD), having an
average size of 11.4 5 1.9 component molecules at steady
state (t ¼ 1.45 s). Approximately half of the identified CKs
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seen in the simulations contained both IQGAP proteins
(Fig. 5 B). We define these complexes that contain both
IQGAPs as ‘‘ambiguous CKs’’ given that they contain
both positive and negative regulatory IQGAPs.

We next assessed the temporal order of assembly of CKs
(Video S1) and CK composition by constructing frequency
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distributions of each CK component before and after steady
state was reached, in other words, at 150 ms and 1.5 s,
respectively (Fig. 5 C). Comparing the frequency distribu-
tions of each protein before and at steady state, we observed
that the steady-state cortexillin I, IQGAP1, IQGAP2, and
myosin II distributions broadened and were noticeably
skewed. We also noted that, at steady state, the myosin II
distribution had peaks only at even numbers due to the
dimer-addition mechanism of bipolar filament assembly.
Overall, the IQGAP1 distribution had larger peaks at even
numbers, reflecting the imposed myosin dimer addition
and the 2:1 stoichiometry of IQGAP:cortexillin I binding.

To investigate the composition of the ambiguous CKs, we
calculated the IQGAP1/IQGAP2 ratios for all ambiguous
CKs and determined how frequently each IQGAP ratio
was observed (Fig. 5 D). This frequency was used to
compute what percentage of all identified ambiguous CKs
exhibited each particular ratio. When comparing the pre-
steady-state (150 ms) and steady-state IQGAP ratio compo-
sitions we observed an approximately twofold increase in
the observed percentage of complexes that have a 2:1
IQGAP1:IQGAP2 ratio. This increase was accompanied
by an approximately 50% decrease in the complexes with
equal numbers, and approximately 75% decrease in the
1:2 IQGAP1:IQGAP2 ratios within ambiguous CKs.
Collectively, these shifts in relative fractions of IQGAP
ratios within ambiguous CKs result from the respective
binding stoichiometries as the stochastic system tends
toward chemical equilibrium.

The model and simulations predict the existence of
ambiguous clusters. To test this prediction, we performed
FCCS experiments of mCherry-IQGAP2 interacting with
GFP-IQGAP1 in Dictyostelium cells and, indeed, we de-
tected IQGAP1-IQGAP2 interactions in living cells
(Fig. 5, E and F). The observed average effective KD for
the IQGAP1-IQGAP2 interaction was 2.75 5 1.78 mM
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(mean 5 SD; median: 1.99 mM). As a negative control,
we measured the interaction between free mCherry and
GFP proteins, which had an average effective KD of
6.98 5 5.36 mM (median: 5.19 mM). For a positive control,
we used a construct in which mCherry and GFP fluoro-
phores were chemically bound via a protein linker, which
had an average effective KD of 1.54 5 0.83 mM (median:
1.52 mM). These values are statistically significant, confirm-
ing the in vivo interaction between the two IQGAPs and the
existence of the ambiguous clusters in cells. Statistical
significance was corroborated via a Kruskal-Wallis test of
statistical significance, followed by a post-hoc Mann-
Whitney-Wilcoxon test.
Geometry affects the location of CK formation

We observed that during simulations carried out in a cube in
SpringSaLaD a large proportion of CKs localized to the
membrane. To determine whether this was a result of the
surface area to volume ratio of our simulation box, we car-
ried out and analyzed simulations in boxes of various di-
mensions (Fig. 6). When simulating CK assembly in a
cubic box ([200 nm]3, high surface area-to-volume [S.A./
Vol] ratio ¼ 0.005 nm�1), which has a relatively high
S.A./Vol. ratio (Fig. 6 A), we saw kits initially forming in
roughly equal numbers between the membrane and cyto-
plasm. However, as the system settled into a steady state,
the majority of observed CKs were membrane bound.
Decreasing the S.A./Vol. ratio approximately fourfold
(Fig. 6 B, S.A./Vol ¼ 0.00125 nm�1) greatly increased the
average initial number of cytoplasmic CKs. Nevertheless,
this number peaked at around 200 ms, after which we see
the distribution of membrane and cytoplasmic CKs shift
to approximately equal numbers. Overall, the number of
membrane bound CKs continued increasing throughout
the beginning of the simulation, suggesting that CKs are
20×200×2000 nm300×100×800 nm3
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C

ns under varying spatial dimensions. Orange and blue markers represent the

from six replicate simulations. Shaded regions represent standard deviation.

Spatial dimensions of the simulation box were: 200 � 200 � 200 nm3 (A),

n color, go online.



0

2

4

6

8

10

C
ou

nt
s

IQGAP1
WT

IQGAP1
iqgap2-

IQGAP2
WT

IQGAP2
iqgap1-

IQGAPs

I

WT iqgap1 iqgap2 iqgap1/2
0

2

4

6

8

10

C
ou

nt
s

Myosin II

H

WT iqgap1 iqgap2 iqgap1/2
0

2

4

6

8

10

C
ou

nt
s

Cortexillin I

G

D
iff

us
io

n 
C

oe
ffi

ci
en

t (
μm

2 /s
)

0

0.2

0.4

0.6

0.8

1.0

IQGAP1
WT

IQGAP1
iqgap2-

IQGAP2
WT

IQGAP2
iqgap1-

IQGAPs
*

F

D
iff

us
io

n 
C

oe
ffi

ci
en

t (
μm

2 /s
)

0

0.2

0.4

0.6

0.8

1.0

WT iqgap1- iqgap2- iqgap1-/2-

Myosin II

E*

0

0.2

0.4

0.6

0.8

1.0

WT iqgap1- iqgap2- iqgap1-/2-

Cortexillin I

D
iff

us
io

n 
C

oe
ffi

ci
en

t (
μm

2 /s
)

D

CortI-
MyoII

CortI-
MyoII
iqgap1-

CortI-
MyoII
iqgap2-

CortI-
MyoII

iqgap1-/2-

Cortexillin I-Myosin II

K
D
(μ

M
)

*

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
C

*
*

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MyoII-
IQGAP1

MyoII-
IQGAP2

MyoII
IQGAP2
iqgap1-

MyoII
IQGAP1
iqgap2-

Myosin II-IQGAPs

K
D
(μ

M
)

B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

* *
CortI-

IQGAP1
CortI-

IQGAP2
CortI-

IQGAP2
iqgap1-

CortI-
IQGAP1
iqgap2-

Cortexillin I-IQGAPs
K
D
(μ

M
)

A

FIGURE 7 Null-mutant CK FCS/FCCS. The average and median cluster diffusion coefficients and effective KD values were obtained from replicate sim-

ulations (for each null-mutant condition) of CK self-assembly in the presence of a 200� 200 nmmembrane containing 33 mMPIP2. All simulations were run

in a 200� 200� 200 nm cube for 1.5 s. (A–C) Cluster protein-protein interaction KD values for WT, iqgap1, iqgap2, and iqgap1/2 null simulations. Protein-

protein binding effective interaction affinities were obtained by performing computational FCCS and tracking molecule-type pairs within clusters. (D–F)
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primarily formed in the cytoplasm and can then bind, as a
formed kit, to the membrane.

Finally, we considered a large, rectangular simulation box
with a low S.A./Vol ratio (0.0005 nm�1), which is likely to
be the most biologically relevant (Fig. 6 C). In this case, the
membrane versus cytoplasmic CK distribution was inverse
to that seen in the cube. Most of the kits formed in the cyto-
plasm, and the number of kits reached a maximum at
approximately 200 ms, after which the system approached
a steady state. Although some CKs translocated to the mem-
brane, the majority remained cytoplasmic. Thus, by select-
ing the adequate spatial parameters, we can recapitulate
the experimental observation that CKs form and primarily
diffuse in the cytoplasm (1).
CK formation in mutant cells

Having recreated CK assembly in a wild-type (WT) sce-
nario, we next investigated the role of individual molecules
by performing a variety of ‘‘null-mutant’’ simulations of CK
assembly (Fig. 7). From these simulations, intermolecular
interaction affinities between CK components were quanti-
fied via computational FCCS analysis (Fig. 7, A–C). CK
diffusion coefficients were computed via computational
FCS analysis (Fig. 7, D–F), and count distributions of
various CK components were quantified (Fig. 7, G–I).

We first considered the role of IQGAP1 through iqgap1
null simulations. When compared with WT simulations, in
these simulations we saw �6- to 8-fold increases in the
apparent affinity of the interactions between cortexillin
I:IQGAP2 (Fig. 7 A; 0.337 5 0.160 vs 0.043 5 0.013
mM; mean 5 SD also below) and myosin II:IQGAP2
(Fig. 7 B; 0.304 5 0.106 vs 0.053 5 0.010 mM). Similar
simulations in which IQGAP2 was eliminated showed an
approximately �2- to 3-fold increases in affinity of the cor-
texillin I:IQGAP1 (Fig. 7 A; 0.134 5 0.071 vs 0.042 5
0.011 mM) and myosin II:IQGAP1 interactions (Fig. 7 B;
0.172 5 0.089 vs 0.081 5 0.029 mM).

CKs containing only IQGAP1 or IQGAP2 (single mu-
tants) showed no significant decrease in average diffusion
coefficients when compared with WT simulations (Fig. 7,
D–F). Finally, we performed iqgap1/iqgap2 double null sim-
ulations in which both IQGAPs were eliminated from the CK
self-assembly simulation. In these simulations, the CK diffu-
sion coefficients increased, particularly for cortexillin I
(Fig. 7 D; WT: 0.52 5 0.096 mm2/s to iqgap1/2: 0.86 5
0.16 mm2/s) and myosin II (Fig. 7 E, 0.400 5 0.086 mm2/s
vs 0.604 5 0.092 mm2/s), suggesting a possible decrease in
Cluster diffusion coefficients for the various simulations. Cluster diffusion coeffi

vidual molecule types (cortexillin I (D), myosin II (E), and IQGAPs (F)), thus pro

containing that particular molecule type. (G–H) Dot plot frequency distributions

and IQGAPs (I)) counts within CKs observed at steady state (t ¼ 1:5 s). Statistic

Mann-Whitney-Wilcoxon post-hoc test, as compared with the corresponding WT

are medians, boxes represent 25th and 75th percentiles. To see this figure in col
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CK size. Eliminating both IQGAPs had a small, but statisti-
cally significant effect on the observed cortexillin I-myosin II
interaction affinity (Fig. 7 C, ranging from 0.0675 0.018 to
0.12 5 0.034 mM). The direct bimolecular interaction be-
tween cortexillin I and myosin II is independent of IQGAP
binding; however, the generation of larger macromolecular
complexes gave rise to effective higher affinity interactions
as measured through computational FCCS.

The computational FCS analysis of the null-mutant simula-
tions suggested the presence of smaller CKs, and this led us to
examine the composition of CKs under all three null-mutant
conditions (Figs. 7, G–I and S5). We observed a shift upward
in the IQGAP1 distribution in iqgap2 null simulations, with
increasing frequency counts concentrated between two and
six IQGAP1 molecules and no clusters with zero IQGAP1
molecules (Fig. 7 I). An analogous shift upward was observed
in the IQGAP2 distribution within the iqgap1 scenario, sug-
gesting that the IQGAP proteins can complementarily substi-
tute each other’s role in cluster growth. The increased binding
of the remaining IQGAP protein within the single null-mutant
scenario is an effect of the allosteric competitive inhibition en-
forcedbetween IQGAPs.Looking at the cortexillin I (Fig. 7G)
and myosin II (Fig. 7 H) count distributions, we observed a
slight narrowing of the distributions in the iqgap1 and iqgap2
scenarios, which was even more pronounced in the iqgap1/2
condition. We also note that no myosin II hexamers were
formed within CKs and that a larger fraction of clusters con-
tained only one or two cortexillin I molecules in the absence
of one or both IQGAPs (Fig. 7 H). Overall, this suggests that
CKs lacking IQGAPs tend to be smaller than those formed
in the WT simulation condition and that IQGAPs likely help
mediate cluster growth.

Finally, using our CK identification algorithm (Methods)
we calculated the average number of CKs and the average
CK size versus time in iqgap1/2 simulations (Fig. S5) and
observed that while the number of CKs was comparable
with that of WT, the average size of the CKs in the dou-
ble-mutant scenario was approximately half of that observed
in the WT simulations (Fig. 5 A).
DISCUSSION

The recent discovery of CKs suggests that cells preassemble
the machinery needed to respond quickly to mechanical
stresses. These kits consist of mechanoresponsive proteins
myosin II and cortexillin I, but also contain IQGAP scaf-
folding proteins that regulate their assembly and possible
localization. CKs are believed to poise the cell for a swift
cients were obtained by performing computational FCS and tracking indi-

viding an estimate for median and average diffusion coefficients for clusters

displaying the frequency of molecule type (cortexillin I (G), myosin II (H),

al tests for the data in (A–F) were derived fromKruskal-Wallis followed by a

simulation condition. p values are reported in Tables S6 and S7. Red lines
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response to mechanical stress by delivering mechanosensi-
tive contractile proteins that can be incorporated into
larger-scale cytoskeletal structures (such as BTFs) upon a
diffusional encounter with the cortex. Because the molecu-
lar details behind the formation of these kits are challenging
to observe experimentally, mathematical modeling provides
an excellent tool for probing the dynamics of CK formation
and how these may preassemble. Here, we have developed a
predictive coarse-grained in silico molecular model of CK
assembly that allows us to study the interactions of the con-
stituents at a molecular level. We validated the model by
successfully recapitulating in silico several in vivo experi-
ments and compared the model outputs with experimentally
measured parameters, including molecular diffusion coeffi-
cients and bimolecular interaction affinities between CK
components in WT and mutant scenarios.

In our simulations, we observed CKs form, grow, and
move to and from the membrane. Our simulations showed
that, as observed experimentally, CKs primarily assemble
in the cytoplasm and, after assembly, they can move and
bind to the membrane. This effect was particularly apparent
in environments where we lowered the S.A./Vol. ratio to a
ratio that is more likely to be representative of the cellular
environment. Our simulations suggest that myosin II and
cortexillin I elements form the core of the kits; in particular,
myosin II dimers provide initial binding sites for other CK
proteins. The kits then continue to grow through the fusion
of independent clusters, which is primarily mediated via
myosin tetramer and small-scale myosin hexamer (BTF6)
formation, but particularly via IQGAP binding, which can
serve to recruit additional myosin II and cortexillin I ele-
ments to a growing cluster.

Unexpectedly, our simulations suggested the existence of
previously unknown ambiguous clusters that contain both
IQGAPs. In fact, simulations suggested that this was the
largest group consisting of nearly 50% of all kits. We tested
this prediction in vivo using FCCS measurements and
confirmed the interactions between IQGAP1 and IQGAP2.
The existence of ambiguous kits offers new ideas about
how the formation and distribution of CKs may be regulated
inside the cell. If CKs existed only in isolated forms of either
nonmechanoresponsive CKs containing only IQGAP1 and
mechanoresponsive CKs containing only IQGAP2, the cell
could regulate the mechanoresponsiveness setpoint partly
by adjusting the relative concentration of two IQGAPs in
the cytoplasm. In fact, in our single IQGAP null-mutant
simulations, we observed an increase in apparent affinity
and binding of the remaining IQGAP. The presence of
ambiguous kits with both IQGAPs suggests that the regula-
tion and recruitment of CKs to sites of stress could achieve a
higher level of tunability and robustness. For example, the
formation of larger ambiguous clusters, containing more
mechanoresponsive myosin II and cortexillin I elements,
could lead to increased delivery of these contractile ele-
ments and thus potentially a larger mechanoresponsiveness.
Having a variety of versions with different ratios of IQGAP1
versus IQGAP2 may then help set the sensitivity of the sys-
tem and allow subsets of CKs to be more readily poised to
elicit mechanoresponsive accumulation versus programmed
cortex assembly.

The role of the two IQGAPs in mechanosensation is
complementary. Whereas cells that have only IQGAP2 are
highly mechanoresponsive, those that have only IQGAP1
are not (6). Moreover, the double mutants are also mechanor-
esponsive, suggesting that IQGAP1 serves as an inhibitor of
cortexillin I and myosin II, and part of the role of IQGAP2
is to alleviate IQGAP1’s inhibition (1,6). In our simulations,
we probed the effect of these two IQGAP proteins by
considering null-mutant simulations. Our results show that,
in the double null-mutant, CKs tend to be smaller (Figs. 6,
S3, and S4), suggesting that IQGAPs help generate larger
CKs by providing additional binding sites to mediate cluster
fusion.

While the CK concept has only been shown experimentally
inDictyostelium cells, we suspect that the concepts will likely
hold inother cell types, even if the specific bindingpartners are
different. Some suggestions of this likelihood are already pre-
sent. For example, ACTN4 was recently found to associate
with nonmuscle myosin IIA (NMIIA) (32). Another mamma-
lian protein, anillin, is highly analogous to cortexillin I in its
role in tethering the actin network to the plasma membrane
during cytokinesis, and anillin can bind directly to NMII
(33). Furthermore, we found that anillin is similarly mecha-
noresponsive in dividing mammalian cells (34).

Mammalian cells also express IQGAP proteins. These
proteins include CH domains, multiple IQ repeats, and a
WW domain, in addition to the GRD domain and the
RGCT domain. The Dictyostelium IQGAP proteins only
share homology through the GRD and RGCT regions. In
our work, we have found that the IQGAPs (IQGAP1 and
IQGAP2) provide control over the mechanoresponsiveness
of the contractility machinery and are part of the CK system.
It would not be a big surprise if the IQGAPs provide a
similar role in mammalian and other cell types. In fission
yeast, for example, an IQGAP protein (Rng2) helps localize
myosin II to the contractile ring independently of actin fila-
ments (35). Other modes of NMII regulation are also essen-
tial for mechanoresponsiveness. Unlike mammalian NMIIs,
Dictyostelium myosin II does not form a 10S structure,
although it can form fold-back structures within the tail
region that do not involve the light chains (36, 37). These
fold-back structures are not essential for regulating bipolar
filament assembly, however (20). Like mammalian NMII,
light-chain phosphorylation does lead to activation of the
motor domain. However, this light-chain phosphorylation
is nonessential for many biological activities as a nonphos-
phorylatable RLC-complemented RLC (mlcR) null is still
able to form myosin II bipolar filaments, complete cytoki-
nesis, undergo motility, and perform development (36).
But, in this nonphosphorylatable RLC-complemented
Biophysical Journal 121, 1–15, December 6, 2022 13
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mlcR mutant, myosin II cannot undergo a mechanorespon-
sive accumulation (4). Thus, light-chain phosphorylation
does provide a critical regulatory function that allows
myosin II to be mechanoresponsive.

In Dictyostelium and mammalian nonmuscle cells,
heavy-chain phosphorylation directly controls the ability
of myosin II to assemble into bipolar thick filaments.
Heavy-chain phosphorylation sets the fraction of myosin
II that is assembled in the cell and controls myosin II assem-
bly dynamics. Because myosin II serves as both the sensor
and actuator of this mechanoresponsiveness, heavy-chain
phosphorylation sets the setpoint, establishing how mecha-
noresponsive a particular cell type can be—enough myosin
II must be assembled in the cortex to sense the stress with
enough free CK pool available to respond (38). Through
our prior modeling work, we created mathematical models
that account for the role of heavy-chain phosphorylation
in mediating myosin II mechanoresponsiveness (5,38,39).

Our simulations have allowed us to complement the infor-
mation that has been obtained from in vivo experiments,
giving us a deeper look at what constitutes the nucleus of
these kits and how they form and grow. Our simulations
also help confirm the experimental observations about
where the kits form. In the future, the model can be
expanded to include other CK components (1). We would
also like to explore further other avenues for CK regulation,
including the role of myosin II heavy-chain phosphorylation
by myosin heavy-chain kinases. Heavy-chain phosphory-
lated myosin II’s could be included in the CKs, resulting
in assembly incompetent CKs that cannot incorporate into
large-scale cytoskeletal structures, such as BTFs, or incor-
porate less efficiently (1,20). We also aim to further explore
how CKs are incorporated into large-scale cytoskeletal
structures by constructing a cell-scale model of CK assem-
bly and incorporating these phenomena.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.
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Table S1. Binding reaction 𝒌off rate constants. koff rate constants explicitly input into SpringSaLaD 
binding reactions. koff values were calculated based upon an assumed kon of 2 µM-1s-1 (22) and 
effective KDs measured in (1). koff values for MyoII dimerization and tetramerization reactions were 
calculated by assuming a kon of 2 µM-1s-1 (22) and using keq values obtained from (5), as explained in 
Supplementary derivation 1. 

 

 

 

 

 

 
 

 

 

 
 
 
 
  

Reaction koff  (s-1) 
CortI-IQGAP1 binding 0.46 

CortI-IQGAP2 binding 0.76 

MyoII IQGAP1 binding 0.56 

MyoII IQGAP2 binding 0.72 

MyoII-CortI 1.0 

MyoIIDi-Di  MyoIIDi-Di 0.96 

MyoIITi-Tj    MyoIITi-Tj 2.05 



Table S2. 𝒌𝐨𝐧 sensitivity statistical analysis. Statistical analysis p-values obtained from Kruskal-
Wallis test comparing across simulations performed with different 𝑘#$ values in Fig. S3 panels, 
followed by post-hoc Wilcoxon-Mann-Whitney tests comparing across all possible pairs within each 
figure panel in Fig. S3. 

 
 

 

 
 
 
 
 
 
 
 

 p-value p-value 

 (Kruskal -Wallis) Mann-Whitney-Wilcoxon 

Cortexillin I-IQGAP2 0.007  

Cortexillin I-IQGAP2 
𝑘#$ : 0.2 vs. 20 µM-1s-1  0.01 

Cortexillin I-IQGAP1 0.003  

Cortexillin I-IQGAP1 
𝑘#$ : 0.2 vs. 2 µM-1s-1  0.02 

Cortexillin I-IQGAP1 
𝑘#$ : 0.2 vs. 20 µM-1s-1  0.02 

Myosin II-IQGAP1 0.9  

Myosin II-IQGAP2 0.018  

Myosin II-IQGAP2 
𝑘#$ : 0.2 vs. 2 µM-1s-1  0.03 

Myosin II-IQGAP2  
𝑘#$ : 0.2 vs. 20 µM-1s-1  0.005 

Cortexillin I-myosin II 0.004  

Cortexillin I-myosin II  
𝑘#$ : 0.2 vs. 2 µM-1s-1  0.01 

Cortexillin I-myosin II  
𝑘#$ : 0.2 vs. 20 µM-1s-1  0.003 

Cortexillin I-myosin II  
𝑘#$ : 2 vs. 20 µM-1s-1  0.04 



Table S3. Diffusion coefficients.  MSD diffusion coefficient values were obtained through simulations 
as in Fig. 2A-B. Simulation FCS values were obtained as described in the methods section. FCS 
diffusion coefficient values represent mean ± standard deviation. Experimental diffusion coefficient 
values were obtained via FCS experiments (26).  

 

 

 

 

 

 

 

 

 
 
 
 
 
Table S4. Fractional saturation analysis and 𝝌𝟐 goodness of fit.  Values were obtained through 
simulations as in Fig. 2C. Expected 𝐾% values were set as constants (set 𝐾%) on the theoretical 
fractional saturation equation with appropriate stoichiometry and a χ2 goodness of fit analysis was 
conducted. p-values close to 1 suggest that there is no statistically significant difference between the 
model fractional saturation equation (1) with the indicated set 𝐾% and the binding data obtained from 
simulations.  
 
 

 

 

 

 

Protein Diffusion coefficient (µm2/s) 

 Simulation Experiments 
 FCS MSD  

Cortexillin I 7.98 ± 1.45 6.317 5.8 

IQGAP1 5.73 ± 0.21 3.695 Not measured 

IQGAP2 6.42 ± 1.00 5.796 4.8 

Myosin II 1.55 ± 0.22 0.742 0.97 

Interaction Set 𝐾& (μM) 𝜒'  statistic p-value 

Cortexillin I-IQGAP2 0.38 0.04159 0.99999 

Cortexillin I-IQGAP1 0.23 0.39471 0.99994 

Cortexillin I-myosin II 0.50 0.02792 0.99999 

Myosin II-IQGAP1 0.28 0.43526 0.99992 

Myosin II-IQGAP2 0.36 0.05744 0.99999 



 

 
Table S5. Effective 𝑲𝐃s. FCCS simulation effective 𝐾& values were obtained through simulations as 
described in methods and shown in Fig. 4. Simulation FCCS values represent mean ± standard 
deviation. Experimental effective 𝐾% values were measured with in vivo FCCS (1).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
  

Protein  𝑲𝐃 (µM) 

 Simulation Experiments 

 (FCCS) (FCCS median) 

Cortexillin I: IQGAP1 0.13 ± 0.70 0.23 

Cortexillin I: IQGAP2 0.34 ± 0.16 0.38 

Myosin II: IQGAP1 0.17 ± 0.09 0.28 

Myosin II: IQGAP2 0.30 ± 0.11 0.36 

Cortexillin I: myosin II 0.07 ± 0.03 0.50 



Table S6. Null mutant FCCS statistical analysis. Statistical analysis p-values obtained from Kruskal-
Wallis test followed by post-hoc Mann-Whitney-Wilcoxon tests comparing across WT and null mutant 
FCCS conditions in Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Pair / Condition 
p-value p-value 

(Kruskal-Wallis) Mann-Whitney-Wilcoxon 

Cortexillin I : IQGAP1  
WT vs.  iqgap2 null 0.001 0.0007 

Cortexillin I : IQGAP2  
WT vs. iqgap1 null 0.0002 0.0001 

Myosin II : IQGAP1  
WT vs. iqgap2 null 0.02 0.01 

Myosin II : IQGAP2  
WT vs. iqgap1 null 0.0002 0.0001 

Cortexillin I : myosin II  
WT vs. all null mutants 0.01  

Cortexillin I : myosin II  
WT vs. iqgap1/2 null  0.006 



Table S7. Null mutant FCS statistical analysis. Statistical analysis p-values obtained from Kruskal-
Wallis test followed by post-hoc Wilcoxon-Mann-Whitney tests comparing across WT and null mutant 
FCS conditions in Fig. 7. 

 

 

 
 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 p-value p-value 

 (Kruskal-Wallis) Mann-Whitney-Wilcoxon 

Cortexillin I  0.0009  

Cortexillin I  
WT vs. iqgap1/2   0.0004 

Myosin II 0.004  

Myosin II  
WT vs. iqgap1/2   0.0007 

IQGAPs 0.00002  

IQGAP1 WT: IQGAP2 WT  0.0001 



Supplementary Derivation 1. Derivation of myosin II domain-by-domain dimerization and 
tetramerization KDs. Here we used the thermodynamic relationship between the equilibrium constant 
and the equilibrium Gibbs free energy to estimate rate constants input into Spring SaLaD for domain-
to-domain binding in dimerization and tetramerization reactions. We re-emphasize that dimerization 
reactions occur along five dimerization domains and tetramerization reactions occur amongst five 
tetramerization domains. Here, we assume that the equilibrium Gibbs free energy of binding is 
distributed equally amongst the five domains to derive 𝑘off	rate constants.   𝑘eqtot = 𝑘'/𝑘.'		 and 
𝑘eqtot = 𝑘//𝑘./		were obtained from Luo et al. for dimerization and tetramerization reactions, 
respectively (see Ref. 5 for 𝑘', 𝑘.', 𝑘/, 𝑘./ values). 𝑘off	values for myosin II dimerization and 
tetramerization reactions were calculated by assuming a 𝑘#$ of 2 µM-1s-1 (22). 𝛥𝐺.010 refers to an 
equilibrium 𝛥𝐺 for binding across all five dimerization (or tetramerization) sites. A gas constant with 
units of J/µmol K and temperature of 296.16 K were used to carry out the calculations. 
 

We assume that the equilibrium binding energy is equally distributed across all five binding domains, 
where 𝛥𝐺.010  represents the equilibrium total free energy of binding. 

𝛥𝐺.010 = 𝛥𝐺.23045 + 𝛥𝐺.2304' + 𝛥𝐺.2304/ + 𝛥𝐺.23046 + 𝛥𝐺.23047 

We use the thermodynamic relationship between the equilibrium constant (𝑘eqtot = 𝑘'/𝑘.'		or 𝑘eqtot =
𝑘//𝑘./) and equilibrium 𝛥𝐺 to find the total equilibrium free energy of binding (𝛥𝐺.010). 

−𝑅𝑇 ln(𝑘eqtot) 	= 𝛥𝐺.010 

Next, we divide 𝛥𝐺.010 by five to obtain the equilibrium free energy of binding for a single site/domain 
(there are five binding domains total). 

𝛥𝐺.2304 = (1/5	)𝛥𝐺.010 

We now once again use the thermodynamic relationship between the equilibrium constant (𝑘eqsite) and 
the equilibrium binding energy (𝛥𝐺.2304) to solve for the equilibrium constant for one binding site. 

𝑘eqsite = 𝑒.
:;<!"#$
=>  

Using the relationship between 𝐾%	 and 𝑘?@, we can now solve for the 𝐾% of a single site (𝐾&site). 

1
𝑘eqsite

= 𝐾D	site 

Finally, using the relationship between 𝐾% and assuming a 𝑘#$	of 2 µM-1s-1 (22), we obtain the 𝑘off rate 
constant for a single dimerization or tetramerization site/domain. 

𝑘on:𝐾&2304; = 𝑘off 

 

 

 

 

 

 



 

 
 

Figure S1. Ambiguous cluster IQGAP1/IQGAP2 ratio in simulations where myosin II-IQGAP1 
stoichiometry is 1:1. Six replicate simulations were run in a (200 nm)3 cube for 1.5 s. The total 
number of ambiguous clusters at the last timepoint of the simulation was identified for each replicate, 
and the IQGAP1/IQGAP2 ratio was computed for each of these. For each distinct ratio identified, the 
percentage of ambiguous clusters displaying that ratio was computed out of the total ambiguous 
clusters observed across all six replicates. 

 

 



 
Figure S2. Effect of 𝒌𝐨𝐧	rate constant on average fraction bound vs. time. Time-lapse curves showing 
average fraction bound vs. time. Each colored curve represents fraction bound vs. time for a single 
replicate. The black curve represents the average fraction bound vs. time averaging over all trajectories 
(replicates) for each condition. Curves were obtained from simulations of CK assembly in which the 𝑘#$ rate 
constant for each of these reactions was independently changed by increasing or decreasing by one order 
of magnitude from the typical 𝑘#$ = 2 µM-1s-1; in all cases, the 𝐾% was held fixed (SI Table 2 Experiments 
Column, and Ref. 1).  

 



 
 

 

Figure S3. 𝒌𝐨𝐧 rate constant sensitivity analysis. Average fraction bound values were obtained at 
t=1.5 s from simulations of CK assembly in which the 𝑘#$ rate constant for each of these reactions was 
independently changed by increasing or decreasing by one order of magnitude from the typical 𝑘#$ =
2	µM-1s-1 (5-7 replicates for each condition; each circle represents one replicate). Only one reaction 
𝑘#$ was changed at a time. A Kruskal-Wallis test was performed to analyze whether there was a 
statistically significant difference amongst the groups portrayed in each panel. This was then followed 
by a post-hoc Mann-Wilcoxon-Whitney test (Table S6). 

 

 



 

Figure S4. Component frequency distributions at t=150 ms (pre-steady state) and t=1.5 s 
(steady state). Frequency distributions for CK component proteins are shown at t=150 ms (pre-steady 
state) in orange and t=1.5 s (steady state) in blue for WT, iqgap1, and iqgap2 scenarios. 

 



 
 

Figure S5. iqgap1/2 time-lapse analysis of cluster number and size. Average CK size vs. time is 
shown in blue, where the blue solid line represents the weighted average computed out of 6 replicate 
simulations and the blue shaded region represents the standard error of the mean. Mean total number 
of CKs is in green, where the green solid line represents the average total number of CKs vs. time 
(computed from 6 replicate simulations) and the green shaded region represents the standard 
deviation in total number of CKs at each timepoint. 

 

 

 

 

 

Movie S1. Representative simulation movie of CK assembly. Cortexillin I molecules are shown in 
cyan, while IQGAP1 and IQGAP2 molecules are shown in yellow and purple, respectively. Myosin II 
hexameric monomers are shown as having magenta head domains, with pink and green tail regions. 
Frame rate utilized was 3 frames per second (𝑑𝑡_𝑖𝑚𝑎𝑔𝑒	 = 	10.6𝑠). Simulations were run in a (200 
nm)3 box at the concentrations detailed in Table 3. 
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