\ AMERICAN JOURNAL OF PHYSIOLOGY

Am J Physiol Cell Physiol 320: C306—-C323, 2021. american. %
First published November 11, 2020; doi:10.1152/ajpcell.00409.2020 ggéﬂgllgglcal CELL PHYSIOLOGY.

THEME

Dynamic Tumor Heterogeneity and Cancer Progression

The mechanobiome: a goldmine for cancer therapeutics

Eleana Parajon,! Alexandra Surcel,’ and © Douglas N. Robinson"2-3:4.5

'Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland; 2Department of
Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; *Department of
Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; “Department of Oncology, Johns Hopkins
University School of Medicine, Baltimore, Maryland; and ®Department of Chemical and Biomolecular Engineering, Johns
Hopkins University School of Medicine, Baltimore, Maryland

Abstract

Cancer progression is dependent on heightened mechanical adaptation, both for the cells’ ability to change shape and to inter-
act with varying mechanical environments. This type of adaptation is dependent on mechanoresponsive proteins that sense and
respond to mechanical stress, as well as their regulators. Mechanoresponsive proteins are part of the mechanobiome, which is
the larger network that constitutes the cell’s mechanical systems that are also highly integrated with many other cellular systems,
such as gene expression, metabolism, and signaling. Despite the altered expression patterns of key mechanobiome proteins
across many different cancer types, pharmaceutical targeting of these proteins has been overlooked. Here, we review the bio-
chemistry of key mechanoresponsive proteins, specifically nonmuscle myosin Il, a-actinins, and filamins, as well as the partnering
proteins 14-3-3 and CLP36. We also examined a wide range of data sets to assess how gene and protein expression levels of
these proteins are altered across many different cancer types. Finally, we determined the potential of targeting these proteins to
mitigate invasion or metastasis and suggest that the mechanobiome is a goldmine of opportunity for anticancer drug discovery

and development.
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INTRODUCTION

Cancer is fundamentally a disease of altered mechanics.
Every step—from proliferation and growth of the original tu-
mor to dissemination and intravasation for new metastatic
niches—depends on evolving internal mechanical machin-
ery. As with healthy cells, cancer cells must be able to inte-
grate chemical and physical signals from their external
environments. But, unlike their healthy counterparts, the
survival of cancer cells is contingent upon their ability to
adapt to mechanically distinct microenvironments. This ad-
aptation requires the mechanobiome, which includes the
collection of proteins that are uniquely poised to respond to
mechanical stresses as well as other proteins, which help set
the mechanical and force-producing activities of the cell.
The full mechanobiome then constitutes a large integrated
network that couples these mechanical systems with a host
of other cellular systems, including gene expression, cell sig-
naling, and metabolism, among others (1, 2). These mecha-
noresponsive proteins, defined as those that accumulate in
response to applied mechanical stresses, include the force-
generating motor protein nonmuscle myosin II and specific
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paralogs of the actin-crosslinking proteins a-actinin (ACTN)
and filamin (1, 3) (Fig. 1, A and B). Many of these proteins
have partnering proteins, such as a-actinin’s CLP36 and the
14-3-3 proteins. Both CLP36 and 14-3-3 s undergo significant
expression changes during cancer development (Fig. 1A).

In numerous cancer types, the expression levels of mecha-
noresponsive protein families are often significantly altered
in a highly paralog-specific manner—isoforms that are
mechanoresponsive tend to have increased expression levels,
whereas those that are not often show decreased or steady
expression correlated with cancer progression. Changes in the
expression level of even low-abundance mechanoresponsive
isoforms reflects a reprogramming of cancer cells that favors
increased adaptability required for efficacious growth and
metastasis (4) (Fig. 1C).

Mechanoresponsive isoforms can be predicted based on
their differential biochemistry, such as actin-binding affin-
ities and myosin bipolar filament assembly dynamics (3, 5, 6).
This differential biochemistry can be leveraged to develop
anticancer chemical screens that are isoform specific.
Although the development of most anticancer therapies relies
on target inhibition, the mechanoresponsive machinery
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Figure 1. Mechanoresponsive proteins provide cell structure and adaptability to mechanical stresses, and their expression levels are frequently elevated
in cancer progression. A: mechanoresponsive proteins include paralogs of nonmuscle myosin Il, a-actinin, and filamin. Myosin Il assembles into bipolar
filaments, which are then organized into the actin meshworks and stress fibers in the cells. a-Actinins are antiparallel dimers, which organize actin fila-
ments into bundles. Filamins on the other hand are v-shaped dimers that also crosslink actin filaments. 14-3-3 proteins can bind to myosin Il tails regions
where they modulate myosin Il bipolar filament assembly, in addition to other biochemical functions. CLP36 binds to a-actinin and associates with actin-
rich structures including stress fibers and the cell cortex. B: mechanoresponsiveness (defined as the ability to accumulate locally in response to applied
mechanical stresses) is well revealed by micropipette aspiration (3, 4). The protein accumulates in the region of the cortex deformed by the suction pres-
sure (arrow), increasing in intensity relative to the opposing cortex. Scale bars, 7 um. C: in pancreatic ductal adenocarcinoma, many mechanoresponsive
proteins elevate in expression. As an example, myosin IIC is found at low expression levels in normal ductal epithelia. As the ductal adenocarcinoma
forms, myosin IIC elevates in expression and persists in metastases (shown on the right is a metastasis found in a lymph node). Increases in the relative
levels of low-expressing proteins, as compared with healthy tissue, can have dramatic effects on cancer cell behavior. Scale bars, 100 um. [B and C

adapted from Surcel et al. (4) with permission.]

provides a target space in which activation of key compo-
nents may reduce metastatic potential while protecting
healthy tissue. This targeted push of the adaptive system out
of its optimum (sweet spot) of activity—the position of the
system that allows for maximal adaptability and ultimately,
progrowth, invasion, and metastatic potential—requires a
thorough understanding of the mechanobiome players. Here,
we will review the mechanoresponsive protein families and
what makes some paralogs mechanoresponsive and others
not, their overall and relative protein concentrations in differ-
ent cancer types, and some early indicators of pharmacologi-
cal success in targeting of the mechanobiome for cancer
therapies.

MECHANORESPONSIVE PLAYERS

Nonmuscle Myosin Il

Nonmuscle myosin II (NMII) is a member of the myosin
superfamily and the major active force generator on the
actin cytoskeleton. Myosin II's functional unit is the bipolar
thick filament (Fig. 14). For mammalian systems, nonmuscle
myosin IIs are composed of 10-30 hexameric monomers,
where each monomer consists of two heavy chains, two
essential light chains, and two regulatory light chains.
Myosin II head domains use ATP hydrolysis to induce con-
formational changes that are propagated through the lever
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arm, allowing the motor to pull on and generate force on the
actin filament.

Mammals have three paralogs: NMIIA, NMIIB, and
NMIIC, with unique mechanochemistry and cellular distri-
butions. Of the three, NMIIA has the highest rate of ATP hy-
drolysis, pulling along actin filaments more rapidly than
NMIIB or NMIIC (7), whereas NMIIB has a much higher duty
ratio (the amount of time the motor domain is strongly
bound to the actin filament in a force-generating state) than
NMIIA (8, 9). In the majority of cells studied, NMIIA and
NMIIB collectively form the largest pool of NMIIs, with
NMIIC forming the smallest pool. All three isoforms can be
mechanoresponsive (3, 4). Across multiple cell types, NMIIA
and NMIIC always respond to internally and externally
applied stresses, whereas NMIIB is situationally mechanor-
esponsive, dependent on its assembly and regulation by the
protein kinase PKC{ (10).

In addition, each isoform has distinct roles in motility, ad-
hesion, and other mechanically driven processes. In cancer,
NMIIs play essential roles in tumor initiation, tumor forma-
tion and growth, and metastasis, all driven by their role in
adhesion, mechanotransduction, motility, and contractility.
During adhesion-dependent single-cell migration, for exam-
ple, the localized activity of distinct NMIIs determines mi-
gratory speed and persistence, with NMIIA typically at the
front promoting protrusions and adhesion maturation, and
NMIIB in the back forming the contractile rear, promoting
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cellular detachment from the substrate, and impacting nu-
clear distortion [reviewed in (11)]. In collective cell migration,
NMIIs are generally considered to generate restrictive forces
that help limit protrusion formation at the sides and rear of
the tissue mass, rectifying Arp2/3-mediated protrusion for-
mation toward the front of the mass and promoting collec-
tive tissue movement [e.g. (12)]. However, it should be noted
that in a colorectal cancer model study, the opposite was the
case whereby inhibiting upstream regulators of myosin II
and myosin II itself promoted collective migration (13). In
glioma, NMII is required for contractility through the brain
tissue’s submicrometer pores (14). Interestingly, inhibition
of NMII in glioblastoma does block invasion but then leads
to faster tumor growth, as myosin II is needed to inhibit pro-
growth pathways, such as the ERK pathway. These two can-
cer examples identify a tumor suppressor role for myosin II
and may underscore the “optimum/sweet spot” concept
where different systems can be uniquely poised as well as
highlight how the various cellular systems are integrated
with one another (myosin II, signaling, growth pathways,
etc.) (15). Additionally, NMIIA and NMIIB are both found in
stress fibers: in younger stress fibers, predominately trans-
verse arcs and radial stress fibers, NMIIA is enriched,
whereas in older stress fibers and longer-lived ventral ones,
NMIIB is predominant (16-18). Less is known about the
lower-in-abundance NMIIC, but all three isoforms are
involved in the retrograde flow of actin (4, 19, 20).

The list of cancers with altered myosin II expression and/
or regulation is extensive and includes breast, lung, prostate,
bladder, pancreatic, melanoma, colorectal, ovarian, uterine,
glioma, and squamous cell carcinomas (4, 14, 15, 21-27) (Fig.
2 and Table 1). Despite their ubiquitous presence, NMIIs and
their regulators have been the target of some anticancer
drug development. For example, Rhodblocké inhibits Rho
kinase (55), thiosemicarbazone iron chelators block rho-asso-
ciated protein kinase/regulatory light chain (ROCK/RLC)
(56), and BDP529 inhibits myotonic dystrophy kinase-related
CDC42-binding kinase (MRCK), reducing breast cancer tu-
mor cell motility and invasion (57). In addition, 17e inhibits
the myosin light-chain phosphatase, impacting prostate can-
cer cell growth (58), and Berberine, a RhoA/ROCK inhibitor,
decreases colorectal cancer growth but also impacts cardiac
and smooth muscle (59, 60). Moreover, Fasudil, also a ROCK
inhibitor, inhibited cellular contractility, decreasing pancre-
atic tumor stiffness and making the cancer cells more sensi-
tive to cytotoxic drugs, gemcitabine and Abraxane, a
standard of care for patients with pancreatic cancer (61). As a
result, Fasudil increased cell death and reduced the meta-
static potential of pancreatic cancer cells in mouse models.
This example highlights the potential of synergizing myosin
II regulator modulation with other treatment strategies.

Most of the aforementioned small molecules show no iso-
form specificity. However, NMII distribution across a wide
variety of cancers reflects differential expression patterns of
NMIIA, IIB, and IIC, suggesting that isoform-specific target-
ing compounds may be a better approach. One such possibil-
ity is 4-hydroxyacetophenone (4-HAP). Identified in a screen
for mechanical modulators, 4-HAP specifically activates
NMIIB and NMIIC but not NMIIA. In pancreatic cancer, the
mechanoresponsive isoforms NMIIA and NMIIC expression
increases, whereas the conditionally mechanoresponsive
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NMIIB decreases [NMIIB is nonmechanoresponsive in pan-
creatic cancer cells (4)]. In both pancreatic and colorectal
cancer models, treatment with 4-HAP leads to decreased dis-
semination in in vitro models and decreased metastatic
tumor burden in hemisplenectomized mice (4, 62). In addi-
tion, 4-HAP impacts the mechanics of circulating tumor cells
from breast cancer (63).

What this cluster of studies suggest is that targeting specific
isoforms in the mechanobiome impacts cancer cell behavior
and has potential therapeutic benefit. Understanding the
characteristics that underlie the biochemical differences
among mechano- and nonmechanoresponsive isoforms, can
lead to better approaches for drug discovery platforms.

Actin Crosslinkers

a-Actinins.

o-Actinins are a family of cross-linking proteins that
includes four paralogs. The muscle-associated actinins are
a-actinin 2 and 3 and are encoded by ACTN2 and 3, whereas
nonmuscle isoforms are encoded by ACTNI1 and 4, respec-
tively. The muscle isoforms are found in skeletal and smooth
muscle and organize actin filaments into sarcomeric struc-
tures, which constitute the minimal contractile unit. The
nonmuscle paralogs organize actin filaments into the net-
works that contribute to nonmuscle cell structure, migra-
tion, and adhesion (Fig. 1A). ACTN4 has been linked to
metastasis in cancer through alterations in cellular features
and cellular misbehavior (64-67).

Based upon stopped flow kinetic measurements and actin
filament cosedimentation assays using single actin-binding
domains, mammalian «-actinin 1 and «-actinin 4 have a
~90-fold differential in binding affinities for actin, with K4s
of 0.36 uM and 32 uM, respectively (68, 69). This major differ-
ence in binding affinity coupled with the force-dependent
bond formation (catch-slip bond) observed for these actin
crosslinking proteins was sufficient to predict which of the
a-actinin paralogs would accumulate in response to mechan-
ical stress (3). As predicted and confirmed experimentally,
a-actinin 4 senses mechanical stress on the actin cytoskele-
ton, resulting in accumulation to sites of external stress
whereas a-actinin 1 does not. Accumulation depends on
catch-slip bond formation and an optimal actin-binding af-
finity, impacting cells that need to be highly adaptive like
cancer cells.

Amazingly, these two ACTNSs also differ in how their expres-
sion changes as a normal pancreatic ductal epithelia cell trans-
forms into a ductal adenocarcinoma (4). ACTNI1 is already
abundant in normal pancreatic ductal epithelial cells and rises
somewhat in the cancer cells and across the cancer stroma.

Meanwhile, ACTN4 is poorly expressed in healthy pancre-
atic ductal epithelial cells but then dramatically increases
only in the ductal adenocarcinoma.

Expression level changes of ACTN genes and their pro-
teins are observed in multiple types of cancers (Fig. 2 and
Table 2). For example, ACTN4 has a decreased expression
level in endometrial, neuroblastoma, and prostate cancer,
relative to normal tissue. In contrast, the expression levels of
ACTN4 are increased in breast and pancreatic cancer, among
others, as compared with the relevant healthy tissue (Table
2). What might these expression changes mean? First, the
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reduced expression of ACTN4 impairs fibroblasts in cell
migration, spreading adhesion and proliferation, suggesting
that o-actinin 4 is necessary for normal cell morphology and
motility (111). In contrast, the overexpression of ACTN4 pro-
motes breast cancer tumorigenesis through enhanced cell
motility (112). Gene expression profiles from patient primary
lung cancer, adjacent benign tissue, and metastatic brain tu-
mor show that ACTN4 is elevated in the metastatic brain tu-
mor and leads to lung cancer metastasis to the brain (113). In
colorectal cancer cells, a-actinin 4 provokes immature focal
adhesions, which leads to cell motility and invasion, whereas
a-actinin 1 does not (114). Additionally, patients with an
increase in the copy number of ACTN4 have metastatic phe-
notypes leading to lower prognosis, like salivary gland

carcinoma (109). Thus, ACTN4 appears to play a role in cancer
progression and metastasis whereas ACTN1 appears not to.

Filamins.

The filamins are a family of actin-binding proteins that can
associate with F-actin filaments in a solution to result in a
dense gel meshwork (115). In humans, the filamin family
includes three isoforms: filamin A (FLNA), filamin B (FLNB),
and filamin C (FLNC) (116). FLNA and FLNB are widely
expressed in various human tissues (117), whereas FLNC is
primarily expressed in cardiac tissue and skeletal muscle
(118, 119). Collectively, filamins are found in the cell cortex,
the F-actin-rich region underlying the plasma membranes
(116, 120-122) (Fig. 1A). In mammalian cells, nonmuscle
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Figure 2. Pancreatic and prostate, but not breast, cancers have one or more mechanoresponsive protein-encoding genes upregulated as compared
with healthy tissue. These data were collected from Gene Expression Omnibus (GEO) Repository, which assesses transcript levels. A: in human patient-
derived ductal carcinoma in situ (DCIS; D), and invasive ductal carcinoma (IDC, I) breast cancer vs. normal tissue (N), some mechanoresponsive proteins
have increased gene expression while nonmechanoresponsive paralog-encoding genes remain unchanged or are decreased (53) (BioProject:
PRJNA126373). B: in pancreatic cancer, several mechanoresponsive protein transcript levels are increased in patient pancreatic cancer tissue relative to
normal tissue (54) (BioProject: PRINA116073). C: metastatic prostate cancer samples from patients with androgen-ablation-resistant metastatic tumors as
well as primary tumor samples relative to normal prostate tissue revealed elevation of NMIIB gene expression (52) (BioProject: PRINA104173, 104175,

104177, 104179). NMII, nonmuscle myosin Il.

AJP-Cell Physiol « doi:10.1152/ajpcell.00409.2020 - www.ajpcell.org

C309

Downloaded from journals.physiology.org/journal/ajpcell at Johns Hopkins Univ Serials Dept Electronic (162 129.250.020) on March 9, 2021.


http://www.ajpcell.org

TARGETING THE MECHANOBIOME IN CANCER

S
1%

)

'sisouSoid ““oig

(61) 101021pUL

‘Boida|qeionejun [el@yioin
(61) Jore21pUI
‘Houd
a|qelone Uorwols
ewouoied
(92) paseatdaq |I92 snowenbg
pue|b Aiealjes
(L5) paseaudu| p1oJAy L
(6t) J01e21pUI
‘Boud (0s) (6) 103e21pUL
a|qeloneH uoisny auab | JY-OLHAN ‘Houd a|qeioney leusy
(8%) paseaudu| 9)1e1s0.1d
(v
(7) pasea.ou| (7)) pasealtou| (7) pasealtdaq (7) pasealdag ‘) pasealou| (7) posealou| Jlealoued
(5t) paseasou| (9t) pasealou) (g) pasealou) ueleAQ
SeWO}Se|qoinaN
(e) siowny
(#71) paseasou| (#71) paseasou) znds ‘paseasdu| ewouea
(L€) paseaudu| (L€) @bueyd oN (Le) pasealdaq (zt) paseasou| (L€) pasealdaq Bun
19AIN
xukie| pue
anbuoy Buipnoul
(1) paseaidaq 28U pue peaH
(o) paseasdag
(6€) paseauou|
(1) @1qeueA (1) @1qeue (6€) paseaiou] (1) @1qeue (1) @1qere (1) pasealdu| ewolo
(8e—9¢)
(££9€) pasealdu| pasea.ou| olIse9
(g€) paseaudu| |eabeydosy
|eLiawopuy
(7€) paseasou| (c€) paseasdu| |210810]0D
|e2IAIDD)
(zg) saui 122
(z€) sauy 192 ul pasealdu| (z2) paseauou|
ul pasealdu| (L) paseaudu| (zz) ebueys oN (L) pasealdag (1€) pasealou) (L) pasealdag 1sealg
(0€) paseauou| (67) paseasdu| (£2) paseasdu| (£7) pasealdu| Jappe|g
(87) paseauou| e|wanna|
plojoAw a1noy
saur anssi] saur 9nss|] uewnH YNyw anssi| saulq |9 uisloid saun anssi] saulq adA] 19dued
lI®D Jo anssi]  uewnH uiajo0id 119D u1a104d uewnH uidjoid 119D 1o anssi| uewnH uidjoid 119D uid0.d
uewinHy YNyw uewnH YNyw

Il uIsoAN

g1l uIsoA

ViI uisoA

SJ92UDD SNOLIDA U] || UISOAW 8[2SNWUOU JO SPUS.) UOISSaIdxXT °| d|qeL

AJP-Cell Physiol « doi:10.1152/ajpcell.00409.2020 - www.ajpcell.org
Downloaded from journals.physiology.org/journal/ajpcell at Johns Hopkins Univ Serials Dept Electronic (162.129.250.020) on March 9, 2021.

C310


http://www.ajpcell.org

() TARGETING THE MECHANOBIOME IN CANCER

Table 2. Expression trends of a-actinins in various cancers

a-Actinin 1 o-Actinin 4
Protein Cell Protein mRNA mRNA Human
Cancer Type Lines Human Tissue HumanTissue Protein Cell Lines  Protein Human Tissue Tissue
Acute myeloid leukemia Variable (70)

Bladder

Breast Increased (73)

Cervical

Colorectal Unfavorable prog.
indicator (49)

Endometrial

Esophageal

Gastric

Glioma Increased (85)

Head and neck,including
tongue and larynx
Liver

Unfavorable prog
indicator (49)

Increased (71)
Increased (32)

Increased (89)

Increased (71, 72)
Distribution pattern
correlates w/
prognosis (65);
Increased (74)
Increased (77,78)
Increased (79)

Decreased (80, 81)
Increased (82, 83)
Increased (84)

Increased (85, 86)

Increased (90);

Increased (71)
Increased (75, 76)

Increased (84)

Increased (87, 88)

Increased (91)

Lung Unfavorable prog.
indicator (49)

Melanoma

Neuroblastomas

Ovarian

Pancreatic No change (4)

Prostate Decreased (102)
Increased (103)

Renal Unfavorable prog.
indicator (49)

Thyroid Increased (106)

Salivary gland

Squamous cell carcinoma
Stomach

Urothelial Unfavorable prog.

indicator (49)

Unfavorable
prog. indicator
(49)

Increased (92) Increased (93)

Decreased (94)

Increased (95-98) Increased (95, 97,
98)

Increased (4, 99— Increased (79)
101); Unfavorable
prog. indicator
(49)

Decreased (104,
105)

Favorable prog. in-
dicator (49)

Increased (107) Increased (108)

Increased (109)

Increased (110) Increased (110)

Prog., prognosis.

filamin A and filamin B form dimers, crosslink actin fila-
ments, and can link the actin filaments to integral membrane
proteins, helping to couple the cortical actin meshwork to the
plasma membrane (116).

Similar to a-actinins, filamin isoforms also have distinct
actin-binding affinities though the range is not as broad
[Filamin B, K4 = 7puM (123); Filamin A, Kq = 17uM (124)].
Filamin B is highly mechanoresponsive, whereas filamin A is
much less so (3, 4). Filamin B and A have a flipped relation-
ship between binding affinity and mechanoresponsiveness
as compared with the a-actinins where the lower affinity
paralog a-actinin 4 is the more mechanoresponsive isoform.
This difference may reflect that filamins are more subtly
tuned and also have a cooperativity component that contrib-
utes to their mechanism of mechanoresponsiveness (3, 5).
Consistent with this, filamin A is necessary for the active
stiffening of melanoma cells that are plated on collagen, but
in response to large external forces, filamin A is not required
for passive stiffening (125). In addition to the mechanores-
ponsiveness, other factors also help modulate filamin-actin-
binding affinity. For example, filamins bind tropomyosin-
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bound F-actin with increased affinity (Kq = 0.13-3.2 M)
(126). The interaction between filamin and F-actin can also
be regulated by phosphorylation (127), inositol phospholi-
pids (128), and Ca*>* -calmodulin (124).

In vitro, increasing the ratio of filamin to actin leads to
tighter networks (129). In cells, increasing the filamin con-
centrations during cancer progression could shift the type of
actin filament organization with differing effects on cell
behavior, depending on the starting point. As a starting ref-
erence point, in melanoma cells, the ratio of filamin to actin
has been measured to be around 1:80-140 (130). In these
cells, increasing FLNA enhances invasive ability of human
melanoma cells (131). In contrast, in many scenarios, FLNA
inhibits cell growth and metastasis (132). For example, recent
research found that the expression of the FLNA gene can in-
hibit the malignancy of prostate adenocarcinoma (133) and
breast cancer cell migration and invasion (23, 134) and can
regulate colorectal cancer cell growth and migration (135).
Additionally, FLNB is upregulated in pancreatic cancerous
ducts, whereas FLNA is upregulated across the pancreatic
tissue and stroma (4). Among other human cancers (Table
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3), B cell childhood acute lymphoblastic leukemia and Pro-B
acute lymphoblastic leukemia have an increase of FLNB
mRNA expression when compared with normal tissues (136).

Overall, highly mechanoresponsive ACTN4 and FLNB
paralogs are consistently associated with greater invasion and
metastasis, whereas the non- or less-responsive paralogs are
generally associated with less invasive and metastatic poten-
tial across many cancer types. Metastatic cells need to
remodel their network to undergo shape change rapidly as
they migrate through an ever-changing microenvironment. A
shift in binding affinity in response to mechanical stress is a
major driver for the mechanoresponsiveness and upregula-
tion of ACTN4 and FLNB. Chemical screens could be devel-
oped that leverage isoform-specific biochemistry toward
therapeutic treatments. Although inhibition is one possible
strategy, compounds that alter cancer cells’ mechanorespon-
siveness by shifting the force sensitivity of the crosslinker’s
actin-binding activity, making a-actinin 4 or filamin B more
a-actinin 1- or filamin A-like, respectively, may provide an
alternate therapeutic strategy.

Other Interacting Players

Due to the isoform-specific activity of mechanoresponsive
proteins, some of their cofactors, such as 14-3-3 and CLP36,
may be of interest to help mediate invasive potential.

Table 3. Expression trends of filamins in various cancers

14-3-3

The human 14-3-3 family comprises seven isoforms (B, v,
£, M, 6, 0, and ), each expressed by a different gene (146). 14-
3-3s generate interest because of their roles in signal trans-
duction pathways that control cell cycle checkpoints (147),
MAP kinase activation (148), apoptosis (149), and DNA dam-
age repair (150). 14-3-3s have been studied extensively as a
drug target by either stabilizing or inhibiting protein-protein
interactions. For example, 14-3-3-targeting drugs include
fusicoccanes, which stabilize 14-3-3 binary structures (151),
pyrrolidonel and epibestatin, which were identified in a
high-throughput screen for 14-3-3 stabilizers (152), and phos-
phonate-type inhibitors, PPI inhibitor 7 (153), among many
more summarized in (154).

14-3-3 was originally identified as an interactor of myosin
II through a combination of genetics, cellular biophysics,
and proteomics assays in Dictyostelium discoideum (155). For
the mammalian counterparts, based on a suite of in vitro
assays, 14-3-3 paralogs, especially 14-3-3c, inhibit myosin IT
filament assembly, whereas 14-3-3{ had no effect on myosin
IIB or IIC but promotes assembly of myosin IIA (156) (Fig.
1A). The mammalian 14-3-3-myosin II interaction has a rela-
tively high affinity with an apparent Ky of 380 nM (156).

The 14-3-3 protein family plays a major role in cancer, and
the majority of the isoforms are upregulated in a variety of

Filamin A Filamin B
mRNA Human mRNA Human
Cancer Type Protein Cell Lines  Protein Human Tissue Tissue Protein Cell Lines Protein Human Tissue Tissue
Acute myeloid
leukemia
Bladder Increased (136)
Breast Increased (137,138)  Increased (137) Increased (136)
Cervical Increased (139, 140)
Colorectal Increased (138, 141); Decreased (136)
Unfavorable prog.
indicator (49)
Endometrial
Esophageal Increased (136)
Gastric Decreased (142) Decreased (136)
Glioma Increased (143)

Head and neck,
including tongue

and larynx
Liver Increased (138)
Lung Increased (138, 144)
Melanoma
Neuroblastomas
Ovarian Increased (138)
Pancreatic Increased (138)
Prostate Increased (138, 145)
Renal Unfavorable prog. in-

dicator (49)

Thyroid

Salivary gland
Squamous cell
carcinoma

Stomach
Urothelial Unfavorable prog. in-

dicator (49)

Increased (136)

Decreased (136)

Increased (136)
Decreased (136)
Increased (4) Increased (136)
Unfavorable Prog

Indicator (49)

Favorable prog. indica-
tor (49)

Increased (136)

Prog., prognosis.
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disease states [reviewed in (157)] (Table 4). For example, 14-3-
3o is strongly upregulated in colorectal cancer cells (147) and
functions as a tumor suppressor in breast (160) and gastric
cancer (222). Additionally, 14-3-3c is upregulated in lung
cancer (223), head and neck squamous cell carcinomas (194),
and chemoresistant pancreatic adenocarcinoma cells (224).
In astrocytoma, 14-3-3p seems to have distinct tissue local-
ization and increased protein expression (225). In several
cancer types, the seven 14-3-3 isoforms exhibit different
ratios of expression. For example, all the isoforms have
increased cytoplasmic levels in vulvar carcinoma, with the
exception of 14-3-30, which has decreased expression (226).
Amazingly, expression levels of 14-3-3¢, {, and 6 increased
with the increase of pathological grade of meningioma,
whereas the 14-3-3n, B, v, and o isoforms were reduced in
expression (227). A group reported that tamoxifen treatment
appears to induce 14-3-3C expression in breast cancer cells
(228). A thorough understanding of isoform-specific function
is needed, as proteins in the mechanobiome are intercon-
nected and affect each other’s expression and/or activity.
For example, overexpression of 14-3-3¢ in a human gastric
cancer cell line resulted in an increase in the total cellular
level of filamin A and an increase in the subcellular localiza-
tion of filamin A in the cytoplasm (229).

CLP36/PDLIM1

CLP36 (also known as CLIM1 or Elfin) is a 38-kD protein
that has an N-terminal PDZ domain and a C-terminal LIM
domain. Due to the association between actin and «-actinins
in cancer, CLP36 becomes of interest here because of its
interactions with a-actinins (Fig. 14). CLP36 associates with
actin filaments during cell shape changes, migration, and
during the contraction of endothelial cells. CLP36 is also
expressed in most nonmuscle tissues though in some, such
as the pancreas, expression can be very low (230). However,
in situ hybridization analysis of mouse tissues revealed that
CLP36 can be highly expressed, and when present, it local-
izes to actin stress fibers through the PDZ domain and inter-
acts with a-actinin 1 and o-actinin 4 (231). During cell shape
change events, including cell spreading, migration, and con-
traction, CLP36 associates with actin filaments and stress
fibers (231, 232). ACTN4 is highly expressed in the colon, and
again in this context, CLP36 interacts with a-actinin 4, form-
ing stable a-actinin 4-CLP36 complexes, which extends
throughout the actin stress fibers (231). CLP36 also showed
significant changes in levels in breast cancer as compared
with ovarian cancer patient plasma samples (233). Thus, the
mechanoresponsive proteins and interacting players have
potential for early detection of cancers. For example,
patients with breast cancer can have increased tumor-associ-
ated autoantibodies to CLP36 (234). Understanding the pro-
tein interactions between CLP36 and o-actinin 4 may
provide additional insight into how to modify their activities
toward a therapeutic end.

Conclusions and Vision

The mechanoresponsive machinery plays a central role in
many cell shape change events and is also heavily associated
with cancer progression and metastasis. Further, many of

these proteins have expression levels that can be altered in
different ways in different cancer types that likely then lead
to the altered cell mechanics and mechanoresponsiveness
associated with cancer progression (4, 69, 113, 134, 235) (Fig.
2 and Tables 1-4). Despite their differential cancer expres-
sion levels, the mechanobiome proteins have been largely
overlooked in drug development and trials. This oversight is
caused by four primary assertions.

The first is that the classic view of these proteins often pre-
scribes a singular major role in the cell, without taking into
account the diversity of functions that can be attained by
varying ratios between the paralogs. For example, non-
muscle myosin II’s textbook definition is that of contractility
required for cytokinesis and motility. However, myosin II's
functions are much more extensive and include roles in
mechanosensation, elasticity and viscoelasticity, cortical
tension and fluidity, the modulation of cell adhesion to sub-
strates as well as other cells, the integration between signal-
ing and mechanical inputs, and the impact on overall cell
mechanics on many other cell functions (3, 236-238). It is
the interplay between the three myosin isoforms that skews
cell behavior in disease states (4, 15); understanding how the
isoforms participate fully in all NMII functions will shed
light on how changes in their expression yield transforma-
tive cancer cells. Similarly, the preponderance of research on
14-3-3 in the cancer field has focused on its role in processes
such as the DNA damage response [e.g., (161)], with less focus
on its interactions with cytoskeletal components (156, 239).
With seven isoforms that exhibit some overlapping function
and differential expression in multiple cancer types, fully
defining their function will allow for better targeting of indi-
vidual 14-3-3 isoforms in cancer.

The second is that ubiquitous expression of mechanores-
ponsive proteins across multiple cell types has led to the
assumption that their targeting would be toxic to human
patients. This is despite the fact that proteins Kras, Rho, and
Aurora kinase, which are also abundantly expressed, are the
target of multiple drug trials for cancer [e.g., reviewed in
(240, 241)]. In addition, the families of proteins that are
mechanoresponsive are often treated as an aggregate of all of
their isoforms or of the most abundantly expressed isoform.
This is most starkly seen with the myosins, where the pre-
ponderance of research on nonmuscle myosin IIs is focused
on IIA and IIB, with little consideration to IIC due to its low
abundance compared with ITA and IIB. However, despite its
lower amounts (18 nM vs. 565 nM of IIA in pancreatic ductal
adenocarcinoma cancer cells), myosin IIC helps facilitate
actin organization and retrograde flow, working in concert
with myosin IIA to increase dissemination and metastasis (4,
62). These data are just one example of how low abundance
proteins that are often disregarded in large data mining can
actually be viable candidates for drug targeting.

Although the abundance of proteins needs to be reconsid-
ered for defining the importance of a given protein for cancer
progression, it is also worth noting that mechanoresponsive-
ness, as well as nearly all cellular processes, can also be regu-
lated by posttranslational modifications. In one key example,
NMIIB has exquisite cell-type-specific and even cell-cycle-
stage-specific mechanoresponsiveness (10). Myosin II heavy-
chain phosphorylation, carried out by PKC{, mediates this dif-
ferential effect in mechanoresponsiveness. No doubt, this
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Table 4. Expression trends of 14-3-3 in various cancers

14-3-3

Protein Human Tissue

mRNA Human Tissue

Cancer Type Protein Cell Lines

Acute myeloid leukemia
Bladder
Breast B: No change (160)

o: Decreased (160, 161)

C: No change (160)
Cervical B: Decreased (168)

¢: Decreased (168)
Colorectal B: Increased (170)

c: Decreased (171)
Endometrial
Esophageal c: Increased (177)

C: Increased (178)
Gastric C: Increased (179)
Glioma B: Increased (186)

Head and neck,including
tongue and larynx

B: Increased (191)
e: Decreased (192)

Liver e Increased (196)
o: Decreased, gene (171)

B: Increased (201)

e: Increased (201)

v: Increased (202); No change (201)
0: Increased (201, 203)

o: Increased (201)

Lung C: Increased (201)

Melanoma

Neuroblastomas

Ovarian o: Decreased (208); Increased (209)

C: Increased (210)

o: Decreased (158); Increased (159)
e: Increased (162, 163)

0: Increased (164, 165)

o: Decreased (160)

C: Increased (166)

B: Unfavorable Prog Indicator (49)
o: Increased (169)

v: Unfavorable Prog Indicator (49)
B: Increased (172)

e: Decreased (173)

o: Decreased (176)

B: Unfavorable prog. indicator (49)
e: Favorable prog. indicator (49)

0: Unfavorable prog. indicator (49)
{: Unfavorable prog. indicator (49)
c: Decreased (177)

C: Increased (178)

B: Increased (180,181)

¢: Increased (182)

o: Increased (183,184)

C: Increased (179)

B: Increased (187-189)

e: No change (188)n: Increased (188)
v: No change (188); Increased (187)
0: No change (188)

(. Decreased (188); Increased (187)

o: Increased (193)

C: Increased (193)

f: Unfavorable prog. indicator (49)

B: Increased (197)

¢: Increased (196, 198)c: Decreased (199)
C: Increased (200)

fB: Unfavorable prog. indicator (49)

N: Unfavorable prog. indicator (49)

0: Unfavorable prog. indicator (49)

{: Unfavorable prog. indicator (49)

B:Increased (201)

¢ Increased (201)

v: Increased (204, 205)

0: Increased (201)

o: No change NSCLC (206); Increased in
NSCLC (207); Decreased in SCLC (206) ;
Increased (201)

C: Increased (201)

B: Unfavorable prog. indicator (49)

v: Unfavorable prog. indicator (49)

C: Unfavorable prog. indicator (49)

o: Decreased (208)c: Increased (209)
C: Increased (210)

o: Decreased (158)
e: Increased (167)
o: Decreased (161)

o: Increased (169)

B: Increased (174)

M: Decreased (175)
o: Decreased (175)
(. Decreased (175)

C: Increased (178)

B: Increased (185)
¢: Increased (185)
N: Increased (185)
v: Increased (185)
0: Increased (185)
C: Increased (185)
B: Increased (188)
¢: Increased (188)
N: Increased (188)
v: No change (188);
Decreased (190)
0: No change (188)
(. Decreased (188)
o: Increased (194)
C: Increased (195)

v: Increased NSCLC (205)
o: Increased NSCLC (207)

Pancreatic o: Variable depending on cell line c: Increased (212) c: Increased (211)
(21) C: Increased (212,213) C: Increased (212)

v: Unfavorable prog. indicator (49)

C: Unfavorable prog. indicator (49)
Prostate B: Increased (214) e: Increased (216) ¢: Increased (216)

o: Decreased (215) 0: Increased (216) o: Decreased (215)
o: Decreased (176, 217) 0: Increased (216)
Renal B: No change (218) B: Increased (218)
¢: Increased (218) e: Increased (218)
Continued
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Table 4.— Continued

14-3-3
Cancer Type Protein Cell Lines Protein Human Tissue mRNA Human Tissue

n: No change (218) N: Increased (218)
v: No change (218) v: No change (218)
0: No change (218) 0: Increased (218)
C: No change (218) C: No change (218)
f: Favorable prog. indicator (49)
v: Unfavorable prog. indicator (49)
{: Unfavorable prog. Indicator (49)

Thyroid B: Increased (219)

Salivary gland

Squamous cell carcinoma
Stomach

Urothelial

N: Increased (220)

C: Increased (221)

NSCLC, non-small cell lung cancer; Prog., prognosis.

example highlights the importance of considering the specific
context of any disease, which will likely influence the best
strategy for targeting the disease.

Third, and perhaps most important, proteins that are upreg-
ulated in cancers are often pursued for pharmacological inhi-
bition. Knocking down or inhibiting mechanoresponsive
proteins in cancerous systems can actually yield more dissem-
inative behavior and animals with higher metastatic load (4,
15, 26, 242). Instead of relegating mechanoresponsive proteins
as untargetable, data from several studies suggest that the
pharmaceutical paradigm needs to be shifted away from inhi-
bition alone. Mechanical adaptability exists on a continuum
with cells occupying a sweet spot (optimum) between adapta-
bility and stability for a given tissue environment. Cancer cells
seek to favor all types of adaptability but have evolved to have
multiple routes to ensure survival, such that inhibition alone
is insufficient to stop cancerous cellular behavior, in some
cases even increasing disseminative behaviors.

Inhibitors
(e.g. myollA 7

i °
deletion) &

A

Aggressive,
highly disseminative

Growing
tumor °
s

Large/

el
> ..." ...)
. ®
e *>

®

Medium
tumor

tumor

Tumor activity (e.g. growth, dissemination)

Normal tissue

.08

disseminative

Normal tissue, low tumor activity

Instead, it is a viable strategy to develop small molecules
that specifically activate mechanoresponsive proteins, push-
ing them into a regime where they act in a manner that is
more stable than their nonmechanoresponsive sister paral-
ogs. One way to generate this hyperactivation is to increase
the binding affinity of the proteins for cytoskeletal binding
partners (such as the actin filaments themselves), preventing
their disassembly and reducing further diseased morpholo-
gies (Fig. 3). In fact, such a strategy has been successfully
used with omecamtiv mecarbil, a selective activator of car-
diac myosin currently in phase 3 clinical trials for hyper-
trophic cardiomyopathies (243). In two different studies, 4-
hydroxyacetophenone (4-HAP), which activates specifically
myosin IIC in pancreatic ductal adenocarcinoma and colo-
rectal cancer models by locking it onto actin filaments,
shows promise that skewing the activation/inhibition curve
toward activation can curb cancer behaviors in mouse mod-
els (4, 62). Looking to mechanoresponsive proteins as

High, aggressive tumor activity

Figure 3. Shifting the activation curve of
mechanoresponsive proteins and their
partners is a viable strategy for developing
cancer therapeutics. Cancer progression
and tumor formation is marked by altered
expression in the mechanoresponsive pro-
teins, a-actinin, filamin, and nonmuscle my-
osin Il (NMII), as well as partnering proteins
such as 14-3-3 and CLP36. Left unchecked,
the altered in gene expression correlate
with increased cell activity, specifically me-
tastasis. Because mechanoresponsive pro-
teins such as NMlls also have tumor-
suppressive roles as they inhibit pathways
such as the ERK pathway, pharmacological
inhibition can lead to enhanced tumor
growth. In contrast, activators can lock in a
cell, leading to anticancer behaviors. One
such example is the activator 4-HAP, which
increases nonmuscle myosin IIB and IIC as-
sembly, leading to increased cortical ten-
sion and reduced tumor metastatic activity.
Figure created with BioRender.com. 4-

Activators
(e.g. 4-HAP)

Small/no tumor

>

HAP, 4-hydroxyacetophenone.

Mechanoresponsive protein level, activity, and/or assembly
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targetable drug spaces (Fig. 3) can do much to change the
cancer fighting landscape.

One final hurdle is that development of antimetastatic
cancer treatments typically depends on measurement of pri-
mary tumor size, looking for tumor size reduction. The logic
is that imaging the primary tumor is easier because of the
tumor’s larger mass and that tumor reduction can be a faster,
suitable surrogate readout for long-term benefit of the drug
for patients. However, this hurdle makes it more tempting to
overlook the real potential of antimetastatic therapeutic
strategies (244). Ironically, at least two traditional anticancer
drugs, the DNA-damaging cisplatin and the microtubule sta-
bilizer docetaxel, also modulate the cancer cell’s mechanical
properties and help reduce invasiveness (245). Perhaps
improved strategies that more precisely leverage underap-
preciated mechanoresponsive proteins can help promote the
fortitude necessary to develop new drugs that target cancer
metastasis. It is also possible that the upregulation of mecha-
noresponsive proteins could offer a molecular program for
early detection of metastases. a-Actinin 4 may already pro-
vide such an opportunity for cervical cancer (246).

Collectively, the mechanobiome, particularly the mecha-
noresponsive proteins and their networks, offer enormous
opportunity for cancer intervention. Strategically targeting
this machinery may allow for the inhibition of a wider
range of cancer types at their most lethal impact point—
formation of metastases—while minimizing toxicity effects
for patients.
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