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Abstract

A cell's ability to change shape is one of the most fundamental biological pro-

cesses and is essential for maintaining healthy organisms. When the ability to con-

trol shape goes awry, it often results in a diseased system. As such, it is important

to understand the mechanisms that allow a cell to sense and respond to its envi-

ronment so as to maintain cellular shape homeostasis. Because of the inherent

complexity of the system, computational models that are based on sound theoreti-

cal understanding of the biochemistry and biomechanics and that use experimen-

tally measured parameters are an essential tool. These models involve an inherent

feedback, whereby shape is determined by the action of regulatory signals whose

spatial distribution depends on the shape. To carry out computational simulations

of these moving boundary problems requires special computational techniques. A

variety of alternative approaches, depending on the type and scale of question

being asked, have been used to simulate various biological processes, including

cell motility, division, mechanosensation, and cell engulfment. In general, these

models consider the forces that act on the system (both internally generated, or

externally imposed) and the mechanical properties of the cell that resist these

forces. Moving forward, making these techniques more accessible to the non-

expert will help improve interdisciplinary research thereby providing new insight

into important biological processes that affect human health.
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1 | INTRODUCTION

One of the most remarkable aspects of cells is their ability to alter shape. These changes enable them to carry out
numerous physiological tasks. Changes in cell morphology start at the very beginning of a cell's existence: it is through
the series of dramatic cell shape changes seen in cytokinesis that mother cells divide, leading to newly formed daughter
cells. Changes in morphology will continue to be crucial to these cells' survival. For example, acquiring nutrients may
first require that cells migrate. This motility involves numerous but also quite distinct changes in cell morphology, from
the broad lamellipodia that allows keratocytes to glide over epithelial surfaces, to the more focused pseudopods used in
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amoeboid locomotion, to the thin filopodia used by fibroblasts to direct migration and wound closure. Once these cells
reach their target, cellular shape changes are required to ingest it and break it down as a nutrient source.

In the cancer scenario, altered cell mechanical properties along with altered mechanosensitivity are emerging as hall-
marks of the disease (Cross, Jin, Rao, & Gimzewski, 2007; Surcel et al., 2019; Surcel & Robinson, 2019). Solid tumors are fre-
quently described as being stiffer than the surrounding tissue, but as soon as the cancer cells disseminate, initiating the
metastasis process, they often become more deformable, perhaps potentiating the ability of the cells to survive in the ever-
changing mechanical landscape (Cross et al., 2007; Nguyen et al., 2016; Remmerbach et al., 2009; Swaminathan et al., 2011).
Then, circulating tumor cells experience ongoing shear stresses in the vasculature, and more deformable cells are better able
to survive this environment (Xin et al., 2019). Within the solid tumor, evidence of mechanical heterogeneity may be further
discerned from the relatively high prevalence of entosis (a.k.a. cell-in-cell or cell cannibalism), the process by which a more
deformable cell engulfs a neighboring stiffer cell (Overholtzer et al., 2007; Sun et al., 2014). A recent study found that pres-
ence of entosis correlated strongly with poor patient outcomes of pancreatic cancer (Hayashi et al., 2020). These observations
collectively suggest that the increased mechanical heterogeneity in the tumor could be a predictor of poor patient survival.

Though cell shape has typically been considered as the result of forces resulting from the action of biochemical signaling,
it is also known that the influence flows in the other direction, closing feedback loops between mechanical and biochemical
signals (Hannezo & Heisenberg, 2019; Kothari, Johnson, Sandone, Iglesias, & Robinson, 2019). Importantly, cell shape alone
can dictate the behavior of a biological system (Meyers, Craig, & Odde, 2006; Rangamani et al., 2013). Moreover, there is a
growing appreciation that extracellular forces can also alter inherently biochemical pathways, a process known as
mechanosensation (Bellas & Chen, 2014; Mohammadi & Sahai, 2018; Rodrigues, Kosaric, Bonham, & Gurtner, 2019).
Mechanical stimuli from external forces change the internal signaling and ultimately result in significant cell shape changes,
while simultaneously altering the biochemical pathways and signaling for modulation of internal biophysical pathways.

Given the fundamental role of mechanics and cell morphogenesis in the function of healthy and disease scenarios,
in this review we present the current status of mathematical modeling of cell shape change and mechanics. We consider
the critical mechanical elements, the major mathematical frameworks for modeling these cellular systems, and model
cell processes, including cell migration, cytokinesis, mechanosensation, and mechanotransduction and cell-in-cell
events including phagocytosis and entosis.

2 | MECHANICAL DESCRIPTION OF CELLS

The shape of the cell is an inherently physical property. Physical forces on the cell are counteracted by the mechanical resis-
tances that oppose them. These forces arise from the environment but can also be produced by the cell itself as a result of
the action of biochemical pathways. Assisting in the cells' ability to maintain its deformed shape are adhesion molecules that
can attach to a surface to counteract retraction forces from the inherent physical properties of the cell cortex.

Mechanical models of cells fall roughly into two classes depending on whether components are modeled using discrete
elements or a continuum approach. In both cases, the assumption is that the motion of cells and their components act in
a low Reynolds number regime which allows all inertial forces to be ignored (Berg, 1993). To understand the evolution of
the cell we consider both the forces that deform the cell as well as the mechanics that resist these forces.

2.1 | The mechanics of viscoelastic cells: discrete elements

Cells have typically been modeled as viscoelastic materials, having both the elastic properties of solids and the viscous
properties of a liquid. For relatively small forces and deformations, elastic objects obey Hooke's law, in which the force
(F) and deformation (x) are proportional: F = kx. This assumes that the deformation is measured from a resting posi-
tion. Though it is customary to write Hooke's law as above, it must be understood that the spring's force is a restoring
one as it opposes the displacement that is induced by an external force. If we consider a spring of resting length
L strewn between two points in space, xi and xj, then

Fij = −k
xi−xj
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denotes the force vector acting on the object at position xi (Figure 1a). Note how the term ϵ in the bracket denotes a nor-
malized deviation away from the resting length. This non-dimensional quantity is the strain. The term at the end
denotes the directionality of the vector force.

Viscous elements obey similar equations, but in this case the magnitude of the force is proportional to the strain
rate, the change in strain over time: F = η _x. Viscoelastic materials share some of these properties. If the same force acts
on both the elastic and viscous elements—for example, the effect of a micropipette aspirating a cell—then the deforma-
tion is the sum of the two individual components. In this Maxwell model (Figure 1b), the total deformation follows
η _F + ηkF = k _x . A common alternative for capturing viscoelastic behavior is the Kelvin–Voigt model (Figure 1c), which
assumes that the force is shared by the two elements. In this case, the viscous and elastic deformations are the same
and obey: F = kx+ η _x . Other possibilities exist but are just extensions of these two basic models. For example, experi-
ments using Dictyostelium cells showed that the ingression into an aspirating micropipette followed the model shown
in Figure 1d in which a Kelvin–Voigt model is in series with a purely viscous damper (Yang et al., 2008). In this case,
the force and displacement are related by

η1 + η2ð Þ _F + k2F = η1η2€x+ η2k _x: ð1Þ

2.2 | Continuum description of cell

The description given above is appropriate for characterizing deformations of discrete particles held together by
mechanical elements. When considering a continuum description of an object, the analysis is similar but must account
for the fact there are no discrete elements.

To illustrate the basic ideas, we consider a tensile stress acting along the x-dimension perpendicular to the face of
an object (Figure 2a). This causes a strain in the x-direction. In this case we write the stress–strain relationship as
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FIGURE 1 Discrete mechanical models of cells. (a) The spring

joining two masses at xi and xj induces a force if the distance

between the two points is different than the resting length L.

Whereas the magnitude of the force is proportional to the

displacement away from the spring's resting point, the direction of

the force is along the vector between the two points acting away

from the deviation. Thus, when stretched, the force acts to move the

two masses towards each other. The force shown, Fij is the force on

mass at xi; there is an equivalent force on this mass pointing

towards xi. On the right is shown the net force (red) of the three

springs that act on the mass at xi. (b) A Maxwell mechanical

element consists of a series connection of a spring and viscous

damper. The graph on the right shows the strain when a constant

force is first applied and then removed. Whereas the elastic

component is responsible for the two instant jumps, the continuous

lengthening is due to the viscous damper. (c) In a Kelvin–Voigt
element, the damper and spring are in parallel. On the right is the

corresponding strain. Note that in this case there are no instant

jumps and there is a maximum strain. (d). Mechanical model

combining a Kelvin–Voigt element in series with a second viscous

damper, and its corresponding strain
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σxx =Eϵxx ,

where σxx is the stress along the x-direction, ϵxx is the corresponding strain, and E is a proportionality constant known
as Young's modulus. In contrast to the forces used to describe elastic behavior in one dimension, these surface forces
(stresses) are expressed in the units of pressure (Newtons over area). Similarly, the deformation ϵ is normalized so as to
be unitless.

One thing that makes the continuous description different is that the stress in the x direction also leads to strains in
both the y and z directions. For example, lengthening an object in the x-direction causes the cross-sectional area to con-
tract (Figure 2b). Alternatively, we can see that stresses in the y and z directions also affect the strain in the x-direction.
Thus, the strain in the x-direction can be expressed as

ϵxx =
1
E

σxx−ν σyy + σzz
� �� �

,

where the Poisson ratio, ν, quantifies the relative deformation in the planes away from which the stress is applied.
The strains described are normal as they result from stresses perpendicular to the face of the object. In contrast,

those that act parallel to a face give rise to shear strains. In total, we describe the strains and stresses acting on the body
by 3 × 3 tensors, ϵij and σij where each index denotes one of the x, y, and z directions. In an elastic solid, the strain and
stress tensors are proportional with the proportionality described by the constitutive equation σ = cϵ, where c is the stiff-
ness tensor. In general, the stiffness tensor consists of 81 coefficients and can be written using four indices. In this case,
the expression above can be written as

σij =
X
k

X
ℓ

cijkℓϵkℓ,

where each index can be one of the three directions. In practice, because of symmetries and assuming an isotropic
material this reduces to:

σ =K trϵð ÞI +2G ϵ−
1
3
trϵð ÞI

� �
,

where the bulk modulus, K, describes the strain response of the object to a stress involving changes in volume but not
shape, and the shear modulus, G, describes shape changes independent of volume changes. The two moduli are con-
nected via the Poisson ratio ν:

K =
2G
3

1+ ν

1−2ν
;

(a) (b)

FIGURE 2 Continuum description of mechanics. (a) Coordinates for a three-dimensional continuum representation. Stresses

perpendicular to a face are defined as having two common indices; for example, a stress that is perpendicular to the face where the normal

lies in the x-direction, is given by σxx. If the force is tangential, mixed subscripts are used. For example, σxy denotes a force acting in the

y-direction along the face with normal in the x-direction. (b) In the continuum description, a stress σxx causes the object to extend in the

x-direction, but also causes it to contract in the y- and z-directions. The ratio of the respective changes in length is the Poisson ratio
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moreover, Young's modulus can be expressed in terms of either of these two moduli and the Poisson ratio:

E=2G 1+ νð Þ=3K 1−2νð Þ:

In the continuum description, viscoelasticity has a similar representation in which the stress tensor is replaced by the
stress rate tensor:

τ = μ ϵ
:
,

where τ is the viscous stress tensor and μ is the viscosity tensor. Viscoelastic elements can display both possible behaviors.
For example, a Kelvin–Voigt model would make the total stress the sum of the elastic and viscous stresses (Campbell &
Bagchi, 2018):

σ = σelastic + σviscous = cϵ+ μ ϵ
:
:

It is worth emphasizing that these are linear stress–strain relationships and are only accurate for small deforma-
tions. Larger deformations require nonlinear hyperelastic models such as the neo-Hookean solid (Arefi, Tsvirkun,
Verdier, & Feng, 2020). A major drawback of these more realistic models, however, is the difficulty of parameteriz-
ing them based on experimental data (Fougeron et al., 2020; Mihai & Goriely, 2017; Valero, Navarro, Navajas, &
García-Aznar, 2016).

2.3 | Potential energy

The mechanical properties of an object described above arise from the action of forces and torques on cell material
(Mietke, Jülicher, & Sbalzarini, 2019). An alternative framework is to describe the system in terms of potential
energy and to consider changes in shape as a minimization of energy functionals (Almendro-Vedia, Monroy, &
Cao, 2013; Nakamura, Bessho, & Wada, 2013; Shlomovitz & Gov, 2008; Ujihara, Nakamura, Miyazaki, &
Wada, 2010).

Mathematically, we define the potential energy as the integral of a force along a path. For example, a force F acting
on an object that moves from point xi to xj requires work given by

W =
ðxj
xi

F x0ð Þ�dx0:

The force is conservative if the energy does not depend on the path taken from xi to xj. As an example, consider the sim-
ple one-dimensional spring: F = kx and take one point to be the resting length (xi = 0) and the other point as the exten-
sion of the spring (xj = x) the work required is

W xð Þ=
ðx
0
F x0ð Þ�dx0 = 1

2
k xk k2:

The elastic potential energy stored in the spring is −W xð Þ under the principle that the work done by a conservative
force and the change in potential energy sum to zero. This property can be turned around so that, given a potential
energy function W xð Þ, we can associate a force

F = −
∂W xð Þ
∂x

: ð2Þ

This approach can be used even when the energy function is not a true energy in the sense of physics. The force defined
above drives the system to its minimal energy state. For example, an “area expansion” energy (Ujihara et al., 2010) can
describe the deviation of the area enclosed by a curve Γ from its resting area A0 by
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Harea xð Þ= 1
2
karea A−A0ð Þ2, A=

ð
Γ
dS,

where the integral denotes the current area. We can define an area restoring force as the functional derivative

Farea xð Þ= −
∂Harea

∂A
= −karea A−A0ð Þn, ð3Þ

which drives the area towards A0. The parameter karea specifies the speed at which the system returns to its equilibrium
area. Similar expressions are possible to ensure volume conservation (Shao, Rappel, & Levine, 2010).

In mechanical models of cells, a commonly used energy function is the Helfrich energy functional (Helfrich, 1973),
which describes the elastic bending energy of a two-dimensional membrane of negligible thickness h surrounding a cell

HHelfrich =
ð
Γ
K0 +K κ−κ0ð Þ2 +KGκG
� �

dS:

Here K0 is the surface tension (described in more detail below), K and KG are the bending and saddle splay moduli, respec-
tively, κ and κG are the mean and Gaussian curvatures, respectively, κ0 is the spontaneous curvature and the integral is taken
over the whole surface area of the membrane. If the topology of the surface is unaltered, then the last component is constant
(by the Gauss–Bonnet theorem) and can therefore be omitted from the minimization. Note the similarity between the sec-
ond term and the area energy term described above. In fact, the change in area terms depend on terms κ and κ0 are related
to the change in area A is proportional to the product of the membrane thickness h and total mean curvature

Ð
Γκ dS so that

the area energy and the second term of the Helfrich bending energy are proportional to each other. Based on the Helfrich
energy, one can obtain equivalent forces by taking the functional derivative with respect to the positions. This, however, is
far from trivial because the complex relationship between curvatures and positions (Guckenberger & Gekle, 2017).

2.4 | Surface tension

Cells have a cortical tension, which can be compared to the surface tension of a liquid. In this case, molecules at the
surface of a liquid have higher potential energy than those in the bulk. The resultant surface tension can be considered
as the energy cost for adding surface area to the cell. The liquid minimizes this energy by achieving minimum surface
area, leading to a spherical shape at the interphase. The relationship between the resultant shape and pressure differ-
ence across the interphase is given by the Young–Laplace formula:

Δp=2γκ,

where K is, as above, the mean curvature of the surface (which for a sphere of radius R is 2/R). The parameter γ is the
surface tension and has units of force over length or energy over area. Though this equation is valid when the forces
(pressures) are balanced, it can be used to drive cellular deformation by taking the stress proportional to a local mean
curvature. Equivalently, the energy functional

Htension =
ð
Γ
γ dS

can be used to obtain a tension-force. Note that this constant term is the first term of the Helfrich energy.

3 | SIMULATION METHODS

Biochemical pathways regulate much of the cellular mechanics that acts to resist forces. For example, while localization
of myosin to the rear of a migrating cell can lead to contractile stresses that can deform the cell, the high concentration
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of myosin at the rear can also alter the cell's local viscoelastic properties through a process of strain stiffening, thus
resisting further deformation (Brill-Karniely et al., 2014; Gardel et al., 2004; Kouwer et al., 2013; Reichl et al., 2008;
Storm, Pastore, MacKintosh, Lubensky, & Janmey, 2005).

The intertwining between biochemistry and physics makes the study of cell shape changes an inherently complex
one in which mathematical models are necessary. This is, by no means, trivial. Most biochemical models are based on
reaction–diffusion equations that describe the temporal and spatial evolution of specific chemical species as they inter-
act. Because of the large number of chemical species, it becomes quite computationally intensive to track their evolu-
tion over time. Few biological processes are able to be defined analytically, which requires numerical simulation
techniques to be used instead. Simulating systems in which the cell shape is evolving lead to an even harder task. In
mathematics, these are known as free-boundary problems, because the boundary between subdomains (e.g., the cell
and its environment) changes over time. This evolution is governed by biochemical pathways (e.g., actin polymerization
leading to pseudopod protrusive stresses) and/or purely mechanical (e.g., surface tension).

3.1 | Biochemical models

Simulations of complex biochemical signals are usually carried out using reaction–diffusion equations. Consider a set
of regulatory species with concentrations denoted by ci. This value changes according to

∂ci
∂t

=Dr2ci + f i cð Þ, ð4Þ

where D is the diffusion coefficient, r2 is the Laplace operator, and f(c) is a (usually nonlinear) function of the concen-
trations of all the species that interact with ci. This partial differential equation requires initial and boundary
conditions.

Various simulations techniques can be used to simulate systems which have a fixed spatial geometry. During the
last 20 years, a number of packages have appeared that aim to specialize these approaches to problems in cell signaling.
For example, the Virtual Cell allows for spatial deterministic and stochastic simulations, as well the ability to generate
geometries from two- and three-dimensional images, while providing a biology-based interface (Cowan, Moraru, Schaff,
Slepchenko, & Loew, 2012; Resasco et al., 2012; Schaff, Gao, Li, Novak, & Slepchenko, 2016). Other spatial simulations
include Smoldyn (Andrews, 2012), URDME (Drawert, Engblom, & Hellander, 2012), and Spatiocyte (Arjunan,
Miyauchi, Iwamoto, & Takahashi, 2020). An important feature of most of these packages is the ability to describe the
model in a freely exchangeable format. Recently, the systems biology markup language published their Level 3 specifica-
tions that allow for descriptions of spatial process (Ii et al., 2019; Keating et al., 2020).

What makes the problem we consider particularly challenging, however, is that the spatial domain over which these
reaction–diffusion equations are solved is not fixed but changes as the geometry of the cell evolves. Moreover, these
changes in morphology usually arise from actions regulated by these species. How to deal with these changes requires
sophisticated numerical methods. Here we give an overview of some of the more popular approaches ones.

3.2 | Finite element methods

The finite element method (FEM) refers to a general approach used to solve partial differential equations on complex
geometries. One of the original uses of FEM was to solve engineering problems of structural mechanics and fluid
dynamics (Dhatt, Touzot, & Lefrançois, 2012; Zienkiewicz & Taylor, 2000). As such, it has been a common means of
studying problems in biomechanics, such as bone remodeling (Mukherjee, Nazemi, Jonkers, & Geris, 2020; Müller &
Rüegsegger, 1995) and, more recently, in cellular mechanics (Bidhendi & Geitmann, 2018; Ganesh, Laughrey,
Niroobakhsh, & Lara-Castillo, 2020; Kennaway & Coen, 2019). In terms of simulating moving boundary problems, the
FEM is an example of an interphase-tracking approach (Elgeti & Sauerland, 2016), whereby the positions of individual
elements that form the deforming boundary are updated over time. This tracking represents a Lagrangian description.

A key first step in the process of the FEM is to subdivide the geometry into smaller regions—the eponymous finite
elements—which is done through meshing (Figure 3a). This spatial discretization has a number of desirable features. It
makes it easier to consider subdomains with varying properties. For example, different mechanical properties of the
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nucleus, cytoplasm, and cortex (Bansod, Matsumoto, Nagayama, & Bursa, 2018; Katti & Katti, 2017) or incorporating
extracellular structures like the extracellular matrix (ECM) (Kim, Silberberg, Abeyaratne, Kamm, & Asada, 2018) or
hydrogels (Tang et al., 2019). It also turns the steady-state problems into algebraic ones and the transient problems into
ordinary differential equations. The second step in the FEM is to rewrite the constitutive laws in terms of test functions
that approximate the desired variables. The mathematics of this latter step is far from trivial, but there are many com-
putational platforms that carry this out, discussed below.

The discretization process can be done using computer-aided design software and is usually based on simple geometri-
cal elements. In fact, most initial models of cell migration start with circular/spherical shapes that are then evolved. Alter-
natively, segmented images of cell shapes can be used for the cell boundary which can then be meshed for the
simulations (Schneider & Haugh, 2005). The meshing process involves choices both of the types and number of elements.
In two-dimensions, the elements are typically triangles; in three-dimensions, tetrahedrons. Reducing the overall element
size usually improves the accuracy of the simulations but at greater computational cost. Alternatively, the accuracy of the
meshing can be improved by replacing these basic shapes by including nodes between the basic ones. For example,
though a 2D triangle is defined by three points with a straight line joining each pair of points, it is possible to include an
extra point in each edge thereby replacing the straight lines with second order lines (parabolas). This can have the effect
of improving the meshing without having to include more elements. It is important to note that the mesh size need not
be the same everywhere and that the mesh can be refined adaptively based on estimates of the local error.

While the initial meshing process is important, when modeling cell shape changes, remeshing will likely be required
and so efficient means of doing so are needed (Figure 3b). How to update the mesh in an important consideration

FIGURE 3 Finite element method. (a) Example of a meshing for two objects. The inner sphere represents a nucleus; the outer, which

is only partially shown, is the cytoplasm. (b) Remeshing in a moving boundary. As the object deforms, the elements change shape. The three

insets show how the elements change shape and size. How to account for these changes is a particularly challenging task in using FEM in

moving boundary problems. (c) FE simulation result showing the stress on a cell that is being indented with a spherical indenter. The top

plot shows the relative dimensions of the three objects included in the simulations: the cell body surrounding the nucleus and the spherical

indenter. The bottom figure shows stress contour plots at an indentation depth of 1.5 μm (Reprinted with permission from Tang, Galluzzi,

Zhang, Shen, and Stadler (2019). Copyright 2019 American Chemical Society)

8 of 33 DINAPOLI ET AL.



because of the computational cost of doing so. Barrett, Garcke, and Nürnberg (2007) developed a means for moving the
FE mesh according to curvature and other flows which they termed the parameterized FEM. This technique was
adapted by Neilson, Mackenzie, Webb, and Insall (2010) to enable local velocity to depend on the concentration of vari-
ous signaling molecules that are updated using reaction–diffusion equations. Elliott, Stinner, and Venkataraman (2012)
have extended this work into three dimensions and included bending energy.

The mechanical models described above can be easily used in the FEM. For example, Teo, Goryachev, Parker, and
Chiam (2010) studied the deformation of single, suspended fibroblasts in an optical stretcher. They assumed a heteroge-
neous mechanical model in which the cell was divided into a mostly elastic cortical region and a viscous cytoplasm,
similar to that of Figure 1d. However, within each of the compartments, the viscoelastic parameters were also allowed
to vary radially.

More complex mechanics can also be considered. For example, Zhou, Xu, Quek, and Lim (2012) used FEM to simu-
late micropipette aspiration on fibroblasts under various mechanical loadings using a mechanical model that aims to
recreate a power-law rheology model. Bansod et al. (2018) recreated micropipette aspiration and atomic force micros-
copy (AFM) experiments using a hybrid approach that combined a neo-Hookean solid with shear modulus and linear
elastic cytoskeletal elements representing actin and microtubule filaments. AFM indentation was also simulated and
compared to a FEM with the goal of understanding the effect of geometrical and mechanical properties of constitutive
parts such as the cell body, nucleus, and lamellipodium (Tang et al., 2019); see Figure 3c.

3.2.1 | Software available

Because of its long history and broad range of applications, there are numerous computational packages for using the
FEM to solve partial differential equations. Commercial versions include Ansys (Canonsburg, PA), Abaqus FEA
(Dassault Systèmes, Johnston, RI), and Comsol Multiphysics (Burlington, MA) which are general purpose finite
element analysis software suites. A general purpose open-source package is FEniCS (Langtangen, 2012). FEBio is
another-source software suite that was specifically developed with the purpose of solving problems in computational
solid biomechanics (Maas, Ellis, Ateshian, & Weiss, 2012). Recent upgrades allow for the consideration of shell
elements in cell mechanics analyses (Hou, Maas, Weiss, & Ateshian, 2018) and the ability to extend the program
through plugins (Maas, LaBelle, Ateshian, & Weiss, 2018).

3.3 | Immersed boundary method

The immersed boundary method (IBM) was developed by Peskin (1972) in his doctoral thesis as a means of simulating
the interaction between fluids and biological structures (Peskin, 2002). Though originally developed as a means of
studying fluid dynamics of blood flow around the heart, it has been used to describe the motion of individual cells. The
technique involves two types of variables (Figure 4a). The equation of motion of the fluid can be described by the
Navier–Stokes equation

ρ
∂v
∂t

+ v�rv

� �
= −rp+ μr2v+F,

where v(x, t) denotes the local fluid velocity, p(x, t) the pressure, ρ the fluid density, μ the dynamic viscosity, and F(x, t)
includes all the external forces acting on the fluid. For incompressible fluid we have that r�v = 0. In the case of single
cell organisms in which inertial forces are negligible compared to the viscous forces (i.e., the Reynolds number is much
smaller than one), the simpler Stokes equation is used and is obtained by setting the left-hand side equal to zero. In the
IBM, the fluid velocity is computed using a fixed, Eulerian, grid.

In contrast, Lagrangian variables are defined on a moving mesh representing the cell boundary. These can be joined
by elastic links obeying Hooke's law and having a set resting length. These nodes surround a viscous incompressible
fluid (Vanderlei, Feng, & Edelstein-Keshet, 2011) or a secondary set of nodes representative of the actin cytoskeleton
(Bottino, 1998; Bottino, Mogilner, Roberts, Stewart, & Oster, 2002). At every time point in the simulation, the position
of each boundary point is used to calculate elastic stresses on each node. Forces acting on each boundary point may also
arise from active forces such as actin polymerization or actomyosin contraction.
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The net sum of the forces acting on the Lagrangian nodes is used to update the local fluid velocity. As shown in
Figure 4a, the membrane nodes need not coincide with the nodes used to update the fluid, so these forces are spread
among the nearest points on the fluid grid and are used to update the fluid velocity. Once the fluid velocity field is
updated the boundary points are then moved at the local fluid velocity. Note that the IBM requires the solution of the
two set of variables, and these equations are often solved using FEM, particularly for the Lagrangian variables
(Guckenberger & Gekle, 2017).

(a)

(b)

(c)

FIGURE 4 Immersed boundary, level set and phase field methods. (a) This shows the two sets of nodes needed in the IBM. The

Eulerian points are defined on a fixed grid and are used to track the fluid. The Lagrangian mesh is used to specify the cell's evolution. It can

consist of membrane points alone, or membrane/cytosol points. The forces on the Lagrangian network are spread to the fluid based on their

location. The fluid velocity is used to upgrade the location of the Lagrangian nodes. (b) Signed distance function used to define shape in the

LSM. Along the Cartesian grid, the distance of every point to the initial shape (in black) is calculated with a positive or negative sign for

points outside or inside, respectively, of the region. This forms the level set function ϕ(x, t) which is updated over time. (c) Example of a

PFM φ (x, t) (left) and magnitude of the gradient krφ(x, t)k. The cells in panels b and c have the same shape
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As described above, the IBM explains how the forces from one set of variables affects the motion of the other. How-
ever, it does not describe the temporal and spatial variations in the intracellular species that gives rise to many of these
forces. In a static computational environment, this is achieved by solving partial differential equations association with
reaction–diffusion processes having the form of Equation (4). If the domain representing the cell is immersed in a fluid
with velocity v, then the species will be carried along by the fluid. In this case the advection term v � rc must be added
to the left-hand side; that is

∂ci
∂t

+ v�rci =Dr2ci + f i cð Þ

now describes the concentration of the species. We must also consider the boundary term. Assuming that the species
must stay inside the cell, we have that

n�rc=0

around the boundary with normal n. Several methods have been used for solving these equations. One is to solve this at
the fixed grid points used to solve for the fluid, where the velocity field is available (Dillon & Othmer, 1999). In this case
care must be taken near the boundary to determine which points lie inside the closed cell. An alternative method is to
solve the equations on an irregular grid defined by the internal nodes (e.g., the actin nodes of Figure 4a). In this case,
the advection term is not needed because the Lagrangian is a moving frame of reference (Bottino, 2001).

The interior of the cell is partitioned according to a Voronoi tessellation, that is, for each node Ai the set Ωi denotes
all points that are closest to node i than any other node. If Ni denotes the set of neighboring nodes to Ai (the nodes Aj

for which Ωi and Ωj share an edge) then it is possible to approximate the diffusion of c as

r2ci =
1
Ωi

X
j∈Ni

cj−ci
Aj−Ai

�� �� sij
�� ��,

where ci and Ai are the concentration and area at node i and sij is the distance between the two nodes (Bottino, 2001).
One drawback of this scheme, however, is that the Voronoi tessellation and associated Delaunay triangulation must be
updated at each time step and this can be computationally expensive.

While it is fair to say that the IBM is more commonly used in simulations involving blood flow and the heart which
do not satisfy the Stokes equation assumption, nevertheless, the IBM has been employed recently to model cell growth
and contractile ring-driven cytokinesis in three dimensions (Bächer & Gekle, 2019; Lee, 2018; Li & Kim, 2016). These
models do not consider reactions or signaling components; rather, the contractile ring is imposed as a force which
drives constriction.

For examples of signaling components driving cell migration, Campbell and Bagchi (2017, 2018) coupled the IBM to
an activator-inhibitor model of reaction dynamics to simulate cell motion in three-dimensions with and without obsta-
cles. The reaction–diffusion equations that governed these terms were solved using FEM as in Elliott et al. (2012).

3.3.1 | Software available

Over the years, numerous implementations for the IBM have been developed. Among the open source packages is
IBAMR (Griffith, 2020) which offers parallel implementation and adaptive mesh refinement. Recently, Battista,
Strickland, and Miller (2017) published IB2d, an IBM implementation in both Matlab and python that supports two-
dimensional simulations, as well as advection–diffusion of chemical gradients.

3.4 | Level set methods

Level set methods (LSMs) denote a set of numerical techniques developed to track the evolution of interphases. Origi-
nally developed by Osher and Sethian (1988) to simulate propagating front with curvature-dependent speeds, it has
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gained a great following, particularly in the fields of image processing and computer graphics (Osher & Fedkiw, 2003;
Sethian, 1999). It has been used to study cell migration (Gallinato, Ohta, Poignard, & Suzuki, 2017; Miao et al., 2017,
2019; Neilson et al., 2011; Shi, Huang, Devreotes, & Iglesias, 2013; Wolgemuth & Zajac, 2010; Yang et al., 2008), cell
division (Poirier, Ng, Robinson, & Iglesias, 2012), wound healing (Ben Amar & Wu, 2014), cell and tissue growth
(Alias & Buenzli, 2020; Guyot et al., 2014; Guyot, Papantoniou, Luyten, & Geris, 2016; Guyot, Luyten, Schrooten,
Papantoniou, & Geris, 2015), and mechanosensation (Zhang, Rosakis, Hou, & Ravichandran, 2020).

LSMs are based on an implicit scheme for defining arbitrary surfaces. The boundary of an object, denoted by Γ(t), is
defined as the zero-level contour of a potential function, ϕ(x), that is defined in one dimension higher than the shape
that is to be tracked. For example, the two-dimensional shape seen in Figure 4b is the set of all points (x, y) that satisfy
ϕ(x, y) = 0. Over time, the boundary of this region obeys the evolution equation

∂ϕ

∂t
+rϕ�v=0, ð5Þ

where v(x) is the interphase velocity. For a shape defined as the level set of a function ϕ, the normal direction of the sur-
face is given by

n=
rϕ

rϕk k :

It follows from Equation (5) that only the normal component of the velocity that influences the evolution equation.
Moreover, if the velocity is normal to the surface, v = Fn, the level-set equation can be written as

∂ϕ

∂t
+F rϕk k=0:

An advantage of the LSM is that the evolution of the shape is achieved by updating ϕ which is defined on a fixed Carte-
sian grid and thus eliminates the need to parameterize the boundary or to update the grid. A disadvantage, however, is
that the function ϕ is defined in one dimension higher than that of the cell, and hence can lead to more expensive com-
putations. Solutions to the latter have included the narrow-band method in which the solution of ϕ is updated only in a
narrow neighborhood of the interphase (Adalsteinsson & Sethian, 1995).

Though it is possible to choose different potential functions to denote the interphase, there are particular numerical
advantages in choosing ϕ(x, t) to be a signed distance function, defined as the distance from the point x to the bound-
ary Γ(t):

ϕ x, tð Þ= � min
x*∈Γ tð Þ

x−x*
�� ��

where the sign is chosen so that it is +1 for points outside the region and −1 inside (Figure 4b). For example, for a
signed distance function, the normal equation above reduces to n = rϕ. Over time, as the level set function ϕ evolves,
it may deviate from the signed distance function because of computational errors. This will require the reinitialization
equation:

∂ϕ

∂t
+ sign ϕð Þ rϕk k−1ð Þ=0:

3.4.1 | Implementing forces in the LSM

The evolution of the surface in the LSM is governed by the level-set Equation (5). Updating ϕ requires the velocity of
the membrane normal to the surface. To this end, we can compute the velocity by considering the strain according to
the mechanical models described in Section 2. For example, using the viscoelastic model of Figure 1d, the total strain
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normal to the surface obeys the second-order differential equation Equation (1) where σ represents the total stress nor-
mal to the surface at each point along the interphase. This stress will have passive components, such as those arising
from surface tension or area/volume conservation, active components such as actin-driven protrusion or actomyosin
contractility, or externally applied including those from a micropipette aspirator, an AFM probe, and so on. Because
the model is linear, we can consider each stress individually. For example,

σ = σten + σvol + σpro + σret + σext,

where the terms on the right-hand side represent contributions of surface tension, volume conservation, protrusive,
and retraction forces, and any imposed external forces, respectively. For example, following the Young–Laplace equa-
tion, surface tension stress is proportional to the local curvature at the surface:

σten = γtenκ x, tð Þ:

As the boundary is defined implicitly by the implicit level set function, the mean curvature κ(x) is the divergence of the
unit normal vector:

κ=r�n:

If ϕ is a signed-distance function, this simplifies greatly

σten = γtenr2ϕ:

Note that the last term is now a linear function of ϕ.
Other forces are straightforward to implement. For example, an area/volume conservation stress can be

implemented as in Equation (3).

σvol = γvol V −V0ð Þn:

The net stresses lead to a membrane deformation strain according to Equation (1). This velocity vector v is defined for
all points on the cell membrane and acts normal to the boundary. To solve the level-set equation, however, requires
that a velocity be available at all points. A velocity field that minimizes the normal component of the field variation is
achieved by setting the velocity at points x away from the membrane equal to the membrane velocity at the location on
the boundary (Γ) closest to the point x. Zhao, Chan, Merriman, and Osher (1996) show that a signed distance function
tends to keep this property when the closest neighbor extrapolation method is used.

3.4.2 | Implementing reaction–diffusion equations

One of the difficulties of using the LSM for simulating coupled mechano-chemical systems is that the LSM concerns
itself only with the interphase of two structures. As the surface evolves, there is no inherent coupling of points over
time. Several methods have been proposed for overcoming this.

Adalsteinsson and Sethian (2003) included variables that exist only on the boundary, say fB, and approximating them
by a globally defined f that agrees on the front. They developed formulae describing how diffusion and advection evolved
as the boundary, defined implicitly by the level-set function ϕ, changed. To this end they incorporated a second equation

∂f
∂t

+ v�rf =0,

where the function f denotes the approximation of the interfacial data and v is the velocity of the function ϕ. Alterna-
tively, Pons, Hermosillo, Keriven, and Faugeras (2006) developed a computational technique for establishing a corre-
spondence between points on the surface at two time points during the evolution. More recent improvements on this
method are found in Bellotti and Theillard (2019).
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A finite volume method has also been used to couple the LSM to associated reaction–diffusion equations
(Strychalski, Adalsteinsson, & Elston, 2010; Wolgemuth & Zajac, 2010). This uses the distance function ϕ to construct a
resolved finite volume discretization of the geometry. The contents of each finite volume are then evolved between two
different time steps ensuring that overall mass is conserved.

3.4.3 | Software available

The numerical solution of the level-set equation is by-no-means trivial; see Osher and Fedkiw (2003) for a discussion of
such algorithms. In theory, because the LSM is based on partial differential equations, any software package that can
solve these equations can be used to model cell shape change using this method. An excellent Matlab toolbox for solv-
ing level-set equations was developed by Mitchell (2008), and is freely available.

3.5 | Phase field methods

The phase field method (PFM) is an alternative method for describing interphasial dynamics. Originally developed to
solve physical problems of phase separation that have well defined energy functionals (Cahn & Hilliard, 1958), it has
been adapted to simulate systems with moving boundaries. In particular, numerous applications have appeared which
rely of PFM for simulating cell migration (Alonso, Stange, & Beta, 2018; Bresler, Palmieri, & Grant, 2019; Camley
et al., 2014; Cao et al., 2019; Gomez, Bures, & Moure, 2019; Kulawiak, Camley, & Rappel, 2016; Löber, Ziebert, &
Aranson, 2015; Molina & Yamamoto, 2019; Moure & Gomez, 2018; Moure & Gomez, 2020a, 2020b; Shao et al., 2010;
Shao, Levine, & Rappel, 2012; Tao et al., 2020) and, to a lesser degree, cytokinesis (Zhao & Wang, 2016a, 2016b).

The phase field approach shares some similarities with the LSM including the fact that the interphase is defined
implicitly by an auxiliary field function, φ, defined everywhere. This function assumes distinct values in the two phases
(for example, one inside the cell and zero outside) and interpolates continuously across a thin interphase. To see how
the interphase arises, consider the function

h φð Þ= 1
4
φ2 1−φð Þ2,

which represents a double-well potential with minima at zero and one. The associated differential equation

∂φ x, tð Þ
∂t

= −
α

ϵ
h0 φð Þ= −

α

ϵ
φ 1−φð Þ 1

2
−φ

� �
ð6Þ

has two homogeneous, stable, steady-state solutions at the minima, and one unstable solution at φ(x) = 1/2. The addi-
tion of a diffusion-like term

∂φ

∂t
= ϵr2φ−

α

ϵ
h0 φð Þ ð7Þ

leads to a partial differential equation. Assuming that the space is one-dimensional, and has boundary conditions at the
two stable equilibria, φ(−∞) = 0 and φ(∞) = 1, the steady-state solution �φ xð Þ represents a smooth transition between
the two stable values. In one dimension, �φ xð Þ has the hyperbolic tangent shape

�φ xð Þ= 1
2
+
1
2
tanh c x−x0ð Þð Þ, c=

1
ϵ

ffiffiffi
α

p
,

where the transition is centered at x0 and the parameter ϵ controls the width of the interphase; smaller values of ϵ lead
to sharper interphases. Note that, if d(x) is the signed distance function of the LSM, then the function �φ xð Þ in the PFM
is given by φ xð Þ= tanh d xð Þ= ffiffiffiffiffi

2ϵ
p� �

(Gomez et al., 2019). In modeling cells, the initial conditions can be set so that φ is
one inside the cell and zero outside (Figure 4c).
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While the location of the interphase is stationary, it can be made to move in either direction. One way of doing this
is to replace the unstable equilibrium φ = 1/2 with a number λ between zero and one. If λ > 1/2 then the interphase
moves towards the left; alternatively, if λ < 1/2, then the interphase moves to the right. Thus, one way of moving the
boundary is to replace the right-hand term in Equation (7) with a term:

∂φ x, tð Þ
∂t

= ϵr2φ−
α

ϵ
φ 1−φð Þ 1

2
+ u−φ

� �
: ð8Þ

Changing the sign of u determines the direction of movement. For example, one possible way of varying u is to use it to
couple it to volume/area conservation (Ziebert & Aranson, 2013). For example, let

u φð Þ=
ð
Γ
φ dV −V0, ð9Þ

where V0 is the resting area/volume of the cell. Note that if φ were perfectly one inside the cell and zero outside, then
the integral equals the volume of the cell. If this is bigger than V0, then u(φ) > 0 and the interphase moves so as to
shrink the cell towards its resting volume. Ziebert and Aranson (2013) have also coupled the phase-field equation to a
polarization vector p that drives protrusion directionally. This can be thought of as being proportional to actin polymer-
ization. The vector p can be made to act on the membrane by multiplying by the gradient of the function φ. It then
affects the field by changing Equations (8) and (9) to

∂φ x, tð Þ
∂t

= ϵr2φ−
α

ϵ
φ 1−φð Þ 1

2
+ u−φ

� �
−βp� rφð Þ

and

u φð Þ=
ð
Γ
φ dV −V0

� �
−σ pk k2,

respectively. Here, σ is a parameter that regulates cell shape (Löber et al., 2015; Molina & Yamamoto, 2019; Ziebert &
Aranson, 2013).

3.5.1 | Implementing forces in the PFM

An alternative way of directing cell motion is to consider forces and their associated energy functionals. In fact, the evo-
lution of φ is determined by the dissipative minimization of a free energy functional. The right-hand side of the phase-
field Equation (6) has a well-defined interpretation in terms of energy. Specifically, a free energy can be defined which
depends on φ and the gradient rφ (Cahn & Hilliard, 1958):

Ψ φð Þ= γ
ϵ
2

rφk k2 + α

ϵ
h φð Þ


 �
,

leading to the Ginzburg–Landau free energy functional

H=
ð
Ω
Ψ dx= γ

ð
ϵ
2

rφk k2 + α

ϵ
h φð Þ


 �
dx:

The corresponding force density follows from the virtual work principle described in Equation (2)

Ften = −
δH xð Þ
δx

=
∂H xð Þ
∂ϕ

rφ= −γ ϵr2φ−
α

ϵ
h0


 �
rφ:
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The term in the brackets is just the right-hand side of Equation (7). In fact, this shows that the phase-field equation is
the gradient flow equation and this evolves to minimize the energy functional H.

This approach can be extended to consider other energy functionals. For example, finding the function φ that mini-
mizes the elastic energy

H=
ð
Ω

kϵ
2

r2φ−
1
ϵ2
h φð Þ

����
����
2

dx

is equivalent to minimizing the bending energy in Helfrich's formulation with prescribed surface area and bulk volume
constraints (Du, Liu, & Wang, 2004).

Two ways have been suggested for including these forces into the phase field equation. The first, introduced in Biben
and Misbah (2003) and Biben, Kassner, and Misbah (2005) starts with the fact that the phase-field interphase is defined
implicitly and hence satisfies the LSM Equation (5). It then appends terms proportional to Ften and to curvature:

∂φ

∂t
+ v�rφ= k1Ften + k2κ rφk k:

In this approach, the velocity follows from the Navier–Stokes equation, but assuming small Reynolds number:

ρ
∂v
∂t
≈−rp+ μr2v+F,

where external forces (e.g., protrusion, contraction, etc.) are added. This approach has been used extensively by Gomez
and coworkers (Gomez et al., 2019; Moure & Gomez, 2018; Moure & Gomez, 2020a, 2020b).

An alternative approach, based on the work of Du et al. (2004) and used by Rappel and others (Alonso et al., 2018;
Camley et al., 2014; Cao et al., 2019; Kulawiak et al., 2016; Shao et al., 2010, 2012; Tao et al., 2020), starts with the
assumption that, in the low inertia limit, the sum of all forces is zero. Now, one of these forces is assumed to be fric-
tional and to be proportional to cell velocity (Ffriction = −τv) and hence

v=
1
τ

X
other

F:

The right-hand side can include the forces arising from the Helfrich bending and the tension force defined above. Note
that the frictional assumption is equivalent to including a viscous term in the mechanical model. Other forces can be
added. Shao et al. (2010), for example, include protrusive and retraction active forces

Fprot = −kprot
rφ

rφk k , Fret = kret
rφ

rφk k ,

where the coefficients kprot and kret are proportional to the local actin filaments and myosin motors, respectively. This
v can be added to the PFM evolution equation leading to

τ
∂φ

∂t
+
X
other

F�rφ=0

or, for example, if the forces modeled are due to bending, protrusion, retraction, and area conservation, we get:

τ
∂φ

∂t
= −γ ϵr2φ−

α

ϵ
h0


 �
rφ+ kprot rφk k−kret rφk k−karea A−A0ð Þ:
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3.5.2 | Incorporating chemical species in the PFM

Incorporating chemical, reaction–diffusion equations in the PFM is relatively straightforward, as there are already indi-
cator functions for both the interior of the cell (φ) and the membrane (δφ = krφk). For example, if a species with con-
centration c is found in the cytoplasm, then the product φc is restricted to the interior of the cell. Alternatively, the
product δφc restricts it to the narrow region around the interphase. Thus, the evolution of a species that is found in the
cytoplasm is governed by

∂ φccyt
� �
∂t

=r� Dcytφrccyt
� �

+ f cyt,

where fcyt includes all the relevant reactions (Moure & Gomez, 2019). For a function found only on the membrane, the
term φ in this equation would be replaced by δφ.

3.6 | Other modeling approaches

We have described the most common packages for coupling mechanics and reaction–diffusion equations. Nevertheless,
there are a number of other modeling approaches that are also popular.

There are a number of papers that rely on agent-based models (ABMs). These models describe individual agents
(e.g., microtubules, actin filaments, myosin motors, etc.) and simulate their interactions (Mogilner & Manhart, 2016).
The models are typically coarse-grained so that they emphasize their interactions while eschewing the microscopic
details. The diffusion of individual elements as well as their binding interactions is simulated via Langevin dynamics.
For example, motor binding is simulated by first defining a region of capture for a filament/motor pair and then
using a Monte Carlo step to determine whether the motor is captured. For example, Bidone et al. (2017) developed a
three-dimensional model to account for various observed properties of the actomyosin network, including the role of
actin crosslinking proteins in buckling. Using a similar agent-based two-dimensional model of the actomyosin net-
work, Chanet et al. (2017) showed that the actomyosin network orients in response to mechanical constraints
imposed by tissue shape. While most ABMs rely on custom-built software, Cytosim is an open-source package for
simulating the cytoskeleton that has had an excellent record (Cortes, Gordon, Nédélec, & Maddox, 2020; Hannabuss
et al., 2019).

Another alternative approach is the cellular Potts methodology (CPM). In the CPM, the cell is defined in a
Euclidean lattice, where each of the elements is either in the cell or not. The evolution of these elements is
governed by an energy functional, which can include components related to adhesion, growth, migration, so
on. Forces and other mechanical properties of cells can be incorporated into the CPM via the energy terms
(Rens & Edelstein-Keshet, 2019). The state of each element evolves using a Monte Carlo scheme by which energy
is minimized over time. Software platforms for CPM include CompuCell3D (Swat et al., 2012) and Chaste (Mirams
et al., 2013).

4 | BIOLOGICAL PROCESSES

The goal of mathematical models of cell physiology is to elucidate mechanisms and to test hypotheses that are difficult
to test experimentally. It follows that a true test of the models is to determine what has been learned from these. Below
we consider some of the biological processes that have used these methods.

4.1 | Cell migration: single cells

Motile cells come in various shapes. It is not surprising that one of the most active research areas for coupling chemical
and mechanical signaling come in studies of cell motility. Mathematical models have had a significant impact; see
Iglesias and Devreotes (2008), Roca-Cusachs, Sunyer, and Trepat (2013), Devreotes et al. (2017), and Rappel and
Edelstein-Keshet (2017) for some relevant reviews.
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4.1.1 | Keratocyte locomotion

The fan-like shape of keratocytes offers a relatively simple means for studying how shape arises from the cell's mechan-
ical properties. Not surprisingly, it was one of the first cells to attract models of cell shape change. Rubinstein, Fournier,
Jacobson, Verkhovsky, and Mogilner (2009) developed an early model of viscoelastic actin mechanics and myosin trans-
port. They showed that myosin concentrated at the rear boundary and pulled the actin network inward so the centripe-
tal actin flow is slow at the front, and faster at the rear and at the sides. Shao et al. (2012) recreated these results using
the PFM and showed how different adhesion properties and myosin concentrations altered both the velocity and
steady-state shape.

More recently, Nickaeen et al. (2017) considered lamellipodial motility and analyzed its dependence on three
parameters: myosin-dependent contractility, a characteristic viscosity-adhesion length, and the rate of actin protrusions.
They showed that, provided contractility was sufficiently high, cells could break symmetry leading to turning behavior.

4.1.2 | Amoeboid locomotion and the excitable system hypothesis

The motion of amoeboid cells, whether in random motility or in response to external chemoattractant signals is one of
the areas that has received the most interest from modeling.

About a decade ago, the excitable system hypothesis posited that the random migration of cells such as neutrophils
and amoebae was regulated by an excitable system (Hecht, Kessler, & Levine, 2010; Xiong et al., 2010). In this hypothe-
sis, noise-driven firings of this system would give rise to actin polymerization that would drive pseudopods. Moreover,
chemoattractants directed cell movement by biasing the probability that pseudopods would appear in one side of the
cell. Several groups coupled these models to drive cell migration, first in two-dimensions (Hecht et al., 2011; Neilson
et al., 2011; Shi et al., 2013) and, more recently in three-dimensions (Campbell & Bagchi, 2017, 2018; Cao et al., 2019).
These models supported the hypothesis. In the absence of a chemoattract, the in silico cell created pseudopods that
strongly resembled those seen experimentally. For example, a characteristic of pseudopods in Dictyostelium cells is that
they appear to split (Bosgraaf & Van Haastert, 2009). Models that coupled excitability with the protrusive forces also dis-
played these splits (Figure 5a,b).

These models also coupled the external chemoattractant to directional motility. Models based on the local-excita-
tion, global-inhibition (LEGI) premise (Levchenko & Iglesias, 2002; Parent & Devreotes, 1999) and those based on the
model of Meinhardt (1999) showed similar response to chemoattractants. Moreover, these models showed the role of a
memory or polarization in enabling persistent migration in the absence of chemoattractants. Interestingly, while the 2D
models have now been expanded into three-dimensions, these more sophisticated models have mostly confirmed the
results of the simpler 2D models. An interesting hypothesis, arising from these models is that chemotactic cells generate
their own chemotactic gradients by locally consuming the chemoattractant (Mackenzie, Nolan, Rowlatt, &
Insall, 2019).

Over the years, several models have suggested that cell morphology could be used to transition from one shape to
another. For example, Satulovsky, Lui, and Wang (2008) altered various parameters, including strengths of adhesion,
protrusion, and retraction and showed that different cell shapes could arise. Similarly, Nishimura, Ueda, and
Sasai (2009) posited that localized cortical factors that suppress actin polymerization are diluted at the front and accu-
mulate at the retracting rear of cell, thus establishing cell polarity. As the strength of these feedbacks grows or falls, the
cell migration pattern changes. More recently, Niculescu, Textor, and de Boer (2015) used an actin-based feedback term
into a CPM model of cell motility and showed that varying the strength of this feedback could lead to both keratocyte
and amoeboid shapes. Through mathematical models, Zmurchok and Holmes (2020) have suggested that Rho GTPases
regulate these shape changes.

Miao et al. (2017) used chemically induced dimerization to show that amoeboid cells could, in fact, be made to
change migratory modes. The activity of the cell could be altered by altering the levels of various regulators in Dic-
tyostelium cells leading to hyperactive cells in which actin-driven cellular protrusions expanded. These cells transitioned
into keratocyte-like and oscillatory morphologies, as predicted from simulations. It was hypothesized that these changes
in activity arose from a lowering of the threshold for activation of the excitable system. This was tested using the
coupled excitable-system-mechanical models (Miao et al., 2017, 2019). In these models, the cells did acquire the oscilla-
tory shape. Moreover, the models showed that it was only with a polarity/memory mechanism that the cell became fan-
like. Using a three-dimensional PFM model, Cao et al. (2019) reproduced these migration modes generated and also
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showed that these modes could be generated by varying mechanical parameters. Importantly, Zhan et al. (2020) have
recently shown that similar alterations can be effected to drive actin-based protrusions in human epithelial cells and
that the resulting wave activity was progressively enhanced across a series of increasingly metastatic breast cancer cell
lines.

In a recent model using the PFM, Flemming et al. (2020) showed how actin waves that arise from the excitable sys-
tem can drive the cell to divide. Their simulations, which are supported by experiments on giant Dictyostelium cells
obtained by electrofusion and exhibiting high activity levels because of a deletion of a RasGAP, show that collision of
the waves with the cell boundary push the membrane outward. Moreover, these protrusions can lead to the formation
of small fan-shaped enucleated cells that exhibit highly persistent motion (Figure 5c).

4.1.3 | Relationship with ECM and durotaxis

The chemical cues presented by the ECM are key determinants for both development and cancer progression (Walker,
Mojares, & Del Río Hernández, 2018). Moreover, many cells, including cancer cells, display durotaxis, directed cell
migration in response to changes in the substrate stiffness which has recently been shown to drive cancer cell migration
(DuChez, Doyle, Dimitriadis, & Yamada, 2019; Lo, Wang, Dembo, & Wang, 2000). This has prompted a number of
mechano-biochemical models of cell migration to consider the interaction of cells with the ECM.

Zhu and Mogilner (2016) modeled a cell consisting of a dynamic actin-myosin network surrounding a rigid nucleus
and enclosed by an elastic membrane. The ECM was represented by a spring network. Their simulations reproduced
five modes of motility if they were able to include or exclude proteolysis, and vary adhesion, protrusion, contraction,
and adhesion. Heck et al. (2020) recently developed a 2D computational model of cell migration through a degradable
viscoelastic ECM and used it to show that changes in ECM stiffness and cell strength affect cell migration and are
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accompanied by changes in number, lifetime, and length of protrusions. Moreover, though force-dependent adhesion
disassembly did not lead to faster migration, it could increase its efficiency. Using a 3D model, Kim et al. (2018) studied
how filopodia sense ECM stiffness. The model was tested by simulating cell movement across regions of ECM of differ-
ent mechanical properties and showed that cells migrated towards stiffer regions.

Marzban, Kang, Li, Sun, and Yuan (2019) coupled a biochemical model consisting of reaction–diffusion equations
of protrusive and contractile signals with a mechanical model that includes cell–substrate interaction to study cell
motion. Their simulations were evaluated by comparing to traction-force microscopy measurements. Simulations of cell
motion between regions of varying rigidity showed cells turning at the stiff-to-soft interphase followed by crawling
along boundary. These turns were caused by a positive feedback in which larger substrate stiffness leads to larger trac-
tion stress, greater focal adhesion and a higher protrusive activity. Escribano et al. (2018) also considered durotaxis in
the context of collected cell migration. Their model showed that collective durotaxis is more efficient than that of single
cells. Moreover, they demonstrated that this is due to the fact that collectively, cells are able to deform the substrate in
regions with lower stiffness more than single cells.

Whereas these models consider substrate of spatially varying rigidity, Molina and Yamamoto (2019) simulated the
motion of keratocyte-like cells on cyclically stretched substrates. They showed that the cellular axis could be realigned,
or could display bistable orientation, depend on the type of coupling with the substrate.

4.2 | Collective cell migration

While most studies of cell migration have concentrated on the movement of single cells, these models are now being
extended to consider multicellular interactions. This is particularly important as various physiological functions, such as
wound healing and cancer metastases, depend on the coordinated movement of groups of cells (Friedl & Gilmour, 2009).

Yang and Levine (2018) relied on a simple particle-based model of cells including purse-string contraction and cell
crawling to study epithelial wound healing. Within this model, each cell consists of two subcellular compartments, one
representing the front end of the cell, the other the back end (Zimmermann, Camley, Rappel, & Levine, 2016). Through
a series of articles, Camley and coworkers have studied the role of collective chemotaxis. Using this same two-
compartment model, they analyzed a collective version of the LEGI mechanism (Camley, Zimmermann, Levine, &
Rappel, 2016). Similar results using a CPM model were obtained by Varennes, Han, and Mugler (2016). Camley and
Rappel (2017) also studied how heterogeneity in the mechanical properties and biochemical response of cells within
the cluster affects collective chemotaxis.

Nonomura (2012) considered 2D clusters of cells using the PFM, taking into account cell adhesion and excluded vol-
ume. Their model included cell adhesion, rearrangement of a cell cluster, chemotaxis, and cell sorting, as well as the
three-dimensional results of cell clusters. These cells, however, were stationary. More realistic models have been consid-
ered. Camley et al. (2014) used a PFM model of cell motility to consider the interaction of two motile cells, but also
included reaction–diffusion equations to consider Rho GTPases as a driver of cell motility. They showed that rotational
motility was regulated by cell polarity. Kulawiak et al. (2016) also considered colliding pairs of cells and recreated the
variety of results seen experimentally, including the reversal of polarity upon contact, sticking, and migrating past each
other.

Löber et al. (2015) expanded the PFM model of Ziebert and Aranson (2013) to account for multiple cells. In this
case, each cell is described by a phase-field function, and their interactions are penalized by introducing an energy func-
tional that penalizes the overlap of the two functions. Their simulations showed that collective migration arose from
inelastic collisions between neighboring cells. These collisions led to alignment of the cells and clusters of cells that
moved together. This could be reduced by lowering the adhesion coefficient. Figure 6a shows the result of one of their
simulations in which cells migrated within a confined, circular domain. Note that the cells organize to rotate collec-
tively. Najem and Grant (2016) also used a PFM incorporating adhesion, surface tension, repulsion, attraction, and
polarization and showed that cells could align to form tissue-like sheets of cells.

4.3 | Cytokinesis

Cytokinesis is the final stage of cell division during which one mother cell divides and gives rise to two daughter cells.
This process requires significant cell shape change and the coordination of the complex physical machinery within the
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cell. Owing to the inherent complexity of cytokinesis, computational models can assist in deciphering the mechanistic
details that may be difficult to uncover experimentally.

At a fundamental level, a cell can be considered to behave like a water droplet with motion that can be dominated
by surface tension and curvature. The ingression of the cleavage furrow between the dividing cells drives the final phase
of cell division. The dynamics of the progression of the furrow cleavage is important for determining the success of a
cell division event (Nguyen & Robinson, 2020; Pollard & O'Shaughnessy, 2019; Zhang & Robinson, 2005). Using LSM
and a viscoelastic mechanical model based on experimentally measured parameters, Poirier et al. (2012) described dif-
ferent phases of cell division, including the dynamics of the furrow cleavage (Figure 7a). They showed that either the
contractile stress of myosin II or protrusive forces on the poles was sufficient for furrow cleavage formation. In the sec-
ond phase of cell division, passive Laplace-like forces, which are derived from cortical tension and surface curvature,
are sufficient to complete division. This model was able to recreate quantitatively various modes of cell division includ-
ing traction-mediated cytofission and myosin-independent cytokinesis seen in Dictyostelium cells.

The symmetrical nature of cytokinesis makes it a desirable target for building models in three dimensions. Li and
Kim (2016) made significant advancements to mathematical methodology of 3D simulations using the IBM (Figure 7b).
They implemented a fully 3D model of cell division including a novel remeshing algorithm to prevent surface distor-
tions and a volume conservation algorithm to maintain cell size. Their mathematical system provides a computational
foundation upon which more biological elements can be added to capture the complexity of cell division fully. Simi-
larly, Zhao and Wang (2016a, 2016b) modeled a dividing cell as a hydrodynamic system and implemented it using a 3D

FIGURE 6 Cell shape changes. (a) Simulation of collective cell migration using PFM. The cells are restricted to moving inside the

circle. As a result, the cells organize to move radially (Reprinted from Löber et al. (2015) with permission under a Creative Commons

Attribution 4.0 International License). (b) Phagocytosis simulation. Snapshots of simulations of the engulfment of antibody-coated beads

(Reprinted from Herant, Lee, Dembo, and Heinrich (2011) with permission under a Creative Commons Attribution License). Note that the

individual panels have been rearranged to fit the page better
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FIGURE 7 Simulations of cell division. (a) Simulation of cytokinesis using the LSM. The four rows depict the relative contribution of

each force to during time (Reprinted from Poirier et al. (2012) with permission under the Creative Commons Attribution License). (b) Three-

dimensional IBM simulation of asymmetric cell division. The asymmetry is obtained by specifying varying positions for the asters, marked

by the letter “Y” (Reprinted with permission from Li and Kim (2016). Copyright 2015 Elsevier Inc.). (c) Simulation of cytokinesis using PFM.

These simulations show the nucleus (yellow spheres) surrounded by the cytoplasm. After splitting, the daughter cells round up under the

influence of surface tension (Reprinted with permission from Zhao and Wang (2016b). Copyright © John Wiley & Sons, Ltd.)
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PFM. They included an actomyosin contractile system on the cell cortex and a cytokinetic ring. The force acting on the
cell was assumed to be proportional to the concentration of actomyosin and the surface tension at any given point. The
results of their model qualitatively agree with many experimental observations. As seen in Figure 7c, these simulations
show one advantage of implicit boundary schemes such as the PFM and LSM, in that changes in topology, such as
when the mother cell gives rise to two independent daughter cells.

Looking more closely at the organization of the cytoskeleton at the cleavage furrow specifically, Minc, Burgess, and
Chang (2011), through a combination of experimental and agent based modeling, determined how the mitotic spindles
were positioned, ultimately determining the placement of the furrow cleavage. They found that dynein motor proteins
that are positioned in the cytoplasm and on the cell cortex create a force balance by pulling on astral microtubules
which places the spindle in the correct position.

To understand the complex structure that allows this force balance to occur, Vavylonis, Wu, Hao, O'Shaughnessy,
and Pollard (2008) used an ABM approach to describe the self-assembly of the cytoskeletal agents that make up the con-
tractile machinery, including random search, capture, pull, release mechanism of actin filaments and myosins. They
showed how a stable ring structure was formed within the appropriate biological time scale. Their model recapitulated
classic cytokinesis experiments including ring fusion events. They hypothesized that even though the model did not
include all potential cytoskeletal cross linkers and regulatory proteins, the randomness allowed sufficient plasticity of
the system to capture the biological event.

4.4 | Mechanosensation and mechanotransduction

Cells live in complex and varied environments. For the cell to respond appropriately to the stressors it will experience
in its surroundings, it must be capable of sensing and responding to the signals it is receiving. This process, known as
mechanosensation and mechanotransduction is implicated in cellular signaling, transcriptional events, cellular memory,
and cytoskeletal architecture. When a cell's ability to sense and respond to its environment is disrupted, aberrant cell
shape and cell motility often ensue leading to disease states (Surcel & Robinson, 2019).

Sensation of substrate stiffness is important in a cell's ability to migrate and proliferate appropriately, among other
things (Janmey, Fletcher, & Reinhart-King, 2020). Depending on the stiffness of the substrate, a cell may need more or
less adhesion molecules to complete the desired biological process. Identifying which parts of molecular basis by which
cells can sense this stiffness can be difficult to explore experimentally. Computational and mathematical models allow
for minimal cells to be built in silico and systematically tested to identify the most robust features of mechanosensation
which could then become targets for disease treatments.

At a molecular level, Borau, Kim, Bidone, García-Aznar, and Kamm (2012) explored the role of actomyosin systems
in substrate sensing using a 3D ABM using Brownian dynamics to simulate molecular movements. The model included
an actin meshwork (actin crosslinking proteins, actin filaments) and motor proteins which could bind to the actin. The
motors would act on the actin filaments, moving pairs of F-actin fibers in a polar fashion. The density of the actin
meshwork could be altered to represent different substrate or ECM stiffnesses. They determined that there was a
biphasic relationship between the stiffness of the substrate and the amount of stress on the system. On stiff substrates
(highly heterogeneous, less compressed actin meshwork), the motors reach a maximum force production leading to
stalling and high stress. In contrast, on soft substrates (more compressed actin meshwork), motor proteins are limited
by steric interactions with the actin meshwork and other motor proteins. This study showed that the actomyosin con-
tractility system alone is sufficient to sense substrate stiffness.

Looking specifically at the adhesion molecules between a cell and its surrounding substrate, Oakes et al. (2018) used
a biophysical model to explore the role of integrin–fibronectin bonds in mechanosensation. Using a mathematical
approach, they parsed out which parts of adhesion bond kinetics were most important for stiffness sensing. The
integrin–ECM bonds were modeled as a catch bond meaning the bond lifetime is a function of applied mechanical load.
They found that this property of the bond was required for mechanosensation and the cell's ability to sense substrate
stiffness. If this property was removed, the cell was unable to sense the stiffness of the substrate. They also found that
these bonds were optimized to sense changes in matrix stiffness with a Young's modulus of 6 kPa or higher which is
consistent with experimental findings.

Zhang et al. (2020) studied the impact of altered substrate stiffness (caused either by the cell applying contractile
forces to the substrate, or an external force being applied to the substrate) on cell shape change, ultimately leading to
altered cellular migration. Using the LSM, they modeled fish epidermal keratocytes on elastic substrates of differing
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stiffnesses. Their model recapitulated several biological processes such as the required symmetry-breaking from a sta-
tionary centrosymmetric keratocyte to a migrating crescent keratocyte. Additionally, the model demonstrated a new
symmetry-breaking mechanism. Specifically, they posited that when a cell applies force to a substrate the resulting
force depends on the local shape of the cell. However, the cell's shape is dictated by the substrate stress. This feedback
loop explained protrusive and contractile mechanisms that led to the polarity required for cellular migration.

4.5 | Cell-in-cell events

Cell engulfment, or cell-in-cell events are often seen throughout biology, and are particularly important in the context
of cancer. Metastatic cancers are often correlated with high frequency of cell-in-cell events (Fais & Overholtzer, 2018).
This process, also known as entosis, is characterized by a population of cells with mechanical heterogeneity and all cells
expressing E-cadherin (Overholtzer et al., 2007; Sun et al., 2014). The more mechanically deformable cells (so-called
winners) engulf the less mechanically deformable cells (losers) and break the loser cells down as a source of nutrients.
Because of the competition for nutrients in many cancers and the potential for high degrees of mechanical heterogene-
ity, entotic events are often upregulated. Through computational simulations based on measured experimental parame-
ters, Sun et al. (2014) determined that a difference in myosin contractility between the winner and loser cells made
completion of entotic events more energetically favorable thus allowing entosis to proceed spontaneously. Inclusion of
actomyosin contractility, especially on the loser cell is therefore critical to successful entotic events.

Though entosis is seen where cells of the same type cannibalize each other, cells can also engulf bacteria and other
particles that are typically smaller than themselves during phagocytosis. Defects in phagocytes (neutrophils, monocytes,
etc.), particularly in patients who have other underlying health conditions, can lead to increased risk of infections and
other diseases and ultimately increasing risk of mortality (Engelich, Wright, & Hartshorn, 2001). In a series of articles,
Herant, Heinrich, and Dembo (2005, 2006) and Herant et al. (2011) developed a finite element model of phagocytosis
using “reactive interpenetrating flow” formalism. In their model, they challenged neutrophils with the fungal particle
zymosan. They adapted their prior models of engulfment of antibody-coated beads to represent more accurately the
engulfment of a live biological particle (Figure 6b). Their current model includes both adhesion between the neutrophil
and the zymosan, and force production in the neutrophil via a generic cytoskeletal signaling pathway to model action
polymerization. The resulting adhesion and action polymerization on either side of the nascent adhesion results in a
transient increase in both cortical tension and cytoplasmic viscosity. Using their prior model alongside this model, the
authors determined the mechanical differences in the antibody-coated bead engulfment and the zymosan engulfment.
Contrasting the engulfment of the fungi (described above), phagocytosis of a coated bead resulted in tight cell-target
adhesion which limited the protrusions of the neutrophils to areas that were not adhered to the bead.

Looking more closely at what drives adhesion bond formation between a phagocyte and a target, Tollis, Dart,
Tzircotis, and Endres (2010) developed a 3D stochastic biophysical model implemented using an opensource finite ele-
ment simulation software, Surface Evolver (Brakke, 1992). They then used a Monte Carlo algorithm to implement the
thermal fluctuations and active membrane deformations. The particle is engulfed using a zipper-like mechanism driven
by the ratcheting motion of the cell membrane. They explore the contributions of passive Brownian motion verses
active actin polymerization to determine what is necessary to drive a successful phagocytic event. The authors found
that in the absence of active actin polymerization, cells were able to complete phagocytosis with purely Brownian fluc-
tuations for particles with radii less than 2.5 μm (though the engulfment took longer to complete compared to active
zippering). The increased efficiency in the presence of actin polymerization was argued to reinforce the membrane
deformations caused by the thermal motion resulting in irreversible adhesion formation.

5 | DISCUSSION AND OUTLOOK

To unravel the nature of a diseased system ultimately requires that we understand how cells maintain a healthy state.
A cell's survival and proper function rely on its ability to control their shape though sensing and responding to their
environment. Cells gain significant insight about their surroundings through mechanosensation. This sensing effects
cell signaling that leads to changes in migration, adhesion, and division. If any one of these processes goes awry, it can
lead to various disease states in the system. Uncontrolled cell growth, abnormal cell migration, and inappropriate sig-
naling resulting from improper mechanical transduction are often correlated with cancerous systems. Similarly, if a cell
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is unable to locate and migrate appropriately towards targets, it can lead to immunodeficiencies and increased risk of
infection.

Looking at the numerous techniques that have been described above (Table 1), a reader seeking some guidance as
to how to start a modeling effort might feel somewhat overwhelmed. What method to use? Hopefully, this review has
shown that the particular method chosen is not paramount—different modeling simulation methodologies can give
rise to quite similar results. The advice we can offer here is based on our personal experience. Approximately 15 years
ago, we were in a similar situation, having developed a number of biochemical models of cell gradient sensing
(Levchenko & Iglesias, 2002; Ma, Janetopoulos, Yang, Devreotes, & Iglesias, 2004) and division/mechanosensation
(Effler et al., 2006; Zhang & Robinson, 2005) but wished to investigate whether these models could recreate realistic
cell shape changes. Our expertise was neither in mechanics nor in numerical methods. We considered several meth-
odologies (IBM, FEM) but were quickly overwhelmed by the complexity of the simulations, primarily because of a
dearth of easy-to-use software. On the other hand, after discovering the LSM Matlab toolbox (Mitchell, 2008), we
were able to start implementing models of shape changes within a couple of weeks. We were aided by the fact that
our lab members were well versed on the underlying software and the package was well documented. In our experi-
ence, this overcame the hurdles in front of us and allowed us to concentrate on answering the biological questions
that interested us. Were we starting again now, the answer might have been different as the availability of software
tools has increased and there is now plenty of expertise as documented in the papers reviewed here. However, we still

TABLE 1 Continuum description of mechanics

Biological
problem Method Dim. References

Actin polymer
dynamics

ABM 2D Bidone et al. (2017)

Biophysical 2D Chanet et al. (2017)

Cell migration CPM 2D Niculescu et al. (2015)

FEM 2D Arefi et al. (2020), Neilson et al. (2011)

3D Kim et al. (2018)

IBM 2D Bottino (1998, 2001), Bottino et al. (2002), Vanderlei et al. (2011)

3D Campbell and Bagchi (2017, 2018)

PFM 2D Alonso et al. (2018), Bresler et al. (2019), Camley et al. (2014), Kulawiak et al. (2016), Löber
et al. (2015), Molina and Yamamoto (2019), Moure and Gomez (2020a, 2020b), Shao
et al. (2010, 2012), Tao et al. (2020), Ziebert and Aranson (2013)

3D Moure and Gomez (2018), Cao et al. (2019)

LSM 2D Yang et al. (2008)

Collective cell
migration

CPM 2D Thüroff, Goychuk, Reiter, and Frey (2019)

PFM 2D Yang, Jolly, and Levine (2019)

Cytokinesis ABM 2D Minc et al. (2011), Vavylonis et al. (2008), Cortes et al. (2020)

IBM 2D Bächer and Gekle (2019)

3D Lee (2018), Li and Kim (2016)

LSM 2D Poirier et al. (2012)

PFM 3D Zhao and Wang (2016a, 2016b)

Mechanosensation ABM 3D Borau et al. (2012)

LSM 2D Zhang et al. (2020)

FEM 3D Ganesh et al. (2020)

Phagocytosis FEM 2D Herant et al. (2011)

Wound healing FEM 2D Escribano et al. (2018)

LSM 2D Ben Amar and Wu (2014)

Entosis 1D Sun et al. (2014)

Growth LSM 3D Alias and Buenzli (2020)
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believe that there is still a large need for the development of more user-friendly software in a number of programing
environments.

Computational techniques like the ones described here can help elucidate the details of the mechanisms that drive
cell shape change. A little over a century ago, D'Arcy Thompson (1917) wrote:

If we look at the living cell of an Amoeba or a Spirogyra, we see a something which exhibits certain active
movements, and a certain fluctuating, or more or less lasting, form; and its form at a given moment, just
like its motions, is to be investigated by the help of physical methods, and explained by the invocation of
the mathematical conception of force.

While looking over the results reviewed here, it is remarkable how prescient these words were. As our under-
standing of the role of mechanics and cell shape in disease increases, there is no doubt that the role of mathemat-
ics and computation will only grow. From our survey of the methods that have been used, it is not clear that there
is a technique that has a clear advantage over the others. On a purely technical level, one of the biggest hurdles is
the availability of simulation platforms that are easy to use and accessible to the non-expert. Though they have
become more common, open source, adaptable software will be of importance to continue to move the field for-
ward. The ability to tie these simulations to experiments and experimentally obtained data will also be important.

Moreover, importantly, because of the wide range of tools needed to understand these processes, a largely interdisci-
plinary approach is needed: biologists to ground the work, provide its context, and to carry out the experiments that are
the ultimate test of the theory; engineers and physicists for the physical description of matter; systems and control engi-
neers for their insight into regulation; and mathematicians and computer scientists for the algorithmic tools that enable
conceptual tools to be tested in silico. Over the last 20 years, the presence of these interdisciplinary teams has grown
tremendously, but there is room for more. Previously we argued that a critical step to a successful interdisciplinary col-
laboration is a commitment to learn each other's scientific languages (Robinson & Iglesias, 2012). This is still true
today.
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