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Fig. S2. Validation of CIMPAQ efficiency for cytokinesis and mitotic inhibitors. (4) CIMPAQ identified 86% of wells plated with cortexillin I null cells, which are
deficient in cytokinesis (cort/ null wells, red; WT wells, blue). (B) Sample CIMPAQ plot of hit compound (red) from the primary screen of the BIOMOL kinase
library, which is ranked 4SDs away from the control data (blue). (C-E) CIMPAQ uses a threshold value for nuclear area to identify mitotic inhibitors. Raw images
of 10 uM nocodazole-treated cells (C) are processed by CIMPAQ (D). (E) CIMPAQ uses a simple threshold of 28 pixels for the mean nuclear area to identify early
mitotic inhibitors. Distributions of the nuclear area of untreated cells (dark gray), 5 pM nocodazole-treated cells (medium gray, middle), and 10 pM nocodazole-
treated cells (light gray) are shown.
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Fig. S3. Characterization of carbamate-7 degradation. (A) Degradation of carbamate-7 produces 3,4-DCA, 4-HAP, and N,N'-bis(3,4-dichlorophenyl)urea (urea).
(B) HPLC stack plot showing degradation of synthetic (1-4) and commercial (5) carbamate-7 in DMSO, and comparison of degradation products and authentic
3,4-DCA (6) and 4-HAP (7). (C) Comparison of the urea degradation product (8) and authentic N,N'-bis(3,4-dichlorophenyl)urea (9) by HPLC analysis. (C, Inset)
Presence of the urea was also confirmed by MS analysis, which shows the characteristic isotopic distribution for N,N'-bis(3,4-dichlorophenyl)urea. (D) Full nuclei
per cell distribution of carbamate-7 and breakdown products. Together, 3,4-DCA and 4-HAP show an increase in binucleates and a decrease in mononucleates,
consistent with the results from carbamate-7 treatment. CB, ChemBridge; syn, synthesized. Compound concentrations: 1 nM, 500 nM, 1,000 nM, 5,000 nM. At

a concentration of 5,000 nM, 4-HAP was lethal, and is therefore not shown (n = 400-1,441 cells per condition).
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Fig. S4. Reversibility of 4-HAP effect on myosin Il cortical enrichment. (A) Cells treated with 500 nM 4-HAP had a twofold increase in myosin Il localization at
the cortex by TIRF imaging within 10 min. At a concentration of 500 nM, 4-HAP was added at t = —10 min. When the 4-HAP-containing media was removed (t =
0), myosin Il localization reverted to pretreatment levels within 15 min of removal (n = 20-26 cells per time point). (B) Dot plot of the raw data shows the fold
change over the DMSO control at each time point of the washout experiment (Left), and a dot plot of the raw data of the cell-surface contact area for the
washout experiments shows no change in surface area among the time points (Right).
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Fig. S5. Quantification of TIRF images shows an increase in myosin Il localization in 4-HAP-treated cells, independent of area changes. (4) Dot plots of the raw
data show the fold increase over the DMSO control at 7 min of 500 nM 4-HAP treatment, but not in a similar DMSO time course, 500 nM 3,4-DCA time course,
or 500 nM 1,3-bis-(3,4-dichloro-phenyl)-urea time course. (B) Dot plots of the raw data of the cell-surface contact area show no change between time points for
all compound treatments.
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Fig. S6. Quantification of TIRF images reveals an increase in myosin Il localization upon 4-HAP treatment in GFP3XAla- and GFP3XAsp-expressing cells, but not
in GFPS456L- or GFPS1-expressing cells. (A) Dot plots of the raw data show the fold-increase over the DMSO control for GFP3XAla- and GFP3XAsp-rescued myol/
null cell lines. GFPS456L and GFPS1 show no change in myosin BTF accumulation at the cortex. (B) Dot plots of the raw data of the cell-surface contact area
show no change between time points for all compound treatments.
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Fig. S7. In vitro assembly and motility assays and PDAC results suggest 4-HAP requires an intact myosin Il cytoskeletal network and is paralog-specific. (A)
Myosin Il Dictyostelium assembly domain C-terminal (ADCT) showed no significant change in in vitro assembly with or without purified 14-3-3 in the presence
of 3,4-DCA or 4-HAP compared with the DMSO control (n = 6 for DMSO control, n = 3 for all others; error bars represent SEM). Similarly, mammalian myosin II1A
(B) and myosin 1IB (C) assembly was unaffected by 3,4-DCA or 4-HAP compared with DMSO control (n = 3; error bars represent SEM). (D) In vitro motility assays
show no significant effect of 4-HAP or 3,4-DCA on NMIIB velocity. The gliding filament velocity of actin filaments on NMIIB in the presence of 500 nM 4-HAP
(n =30), 500 nM 3,4-DCA (n = 30), and both compounds at a 1:1 ratio (250 nM each, n = 60) was measured. A significant change in velocity compared with the
DMSO control (n = 30; P = 0.2-0.4) was not observed. (E and F) Quantification of TIRF images reveals no myosin Il localization change in 4-HAP-treated cortl::
GFPmyo cells. (E) Dot plot of the raw data shows no fold change over the DMSO control. (F) Dot plot of the raw data of the cell-surface contact area shows no
change between time points for compound treatments. (G and H) 4-HAP affects WT and metastatic pancreatic cells in a myosin ll-specific manner. (G) 4-HAP
decreases the cortical elasticity of the PDAC A10.7 cells toward an HPDE-like mechanical profile. (H) 4-HAP increases assembled myosin 11C in WT HPDE cells. Cell
numbers are shown on bars. *P = 0.04. (/) 4-HAP shows little effect on myosin lIA-phosphorylation (phosphor-Ser1943) in either HPDE or ASPC-1 cells. Cell
numbers are shown on bars. P = 0.17. (J) Viability assay on ASPC-1 cells across five concentrations of 4-HAP (50 nM, 500 nM, 1 pM, 5 uM, 50 pM) shows no
difference over DMSO control.

Surcel et al. www.pnas.org/cgi/content/short/1412592112 11 of 13


www.pnas.org/cgi/content/short/1412592112

L T

/

1\

BN AS PN AN D

Table S1. CIMPAQ hits identified from the kinase inhibitor collection
Phenotypic categorization CAS number Name Pathway affected
Cytokinesis inhibitors (nonlethal) 24386-93-4 5-lodotubercidin Inhibits ERK2, adenosine kinase, CK1, CK2, and
insulin receptor kinase
62004-35-7 LFM-A13 Tyrosine kinase inhibitor
Cytokinesis inhibitors (lethal, 5 d) 220904-83-6 GW 5074 A benzylidene oxindol derivative that inhibits the
Raf/MEK/ERK2 kinase cascade by blocking the
kinase activity of c-Raf1
446-72-0 Genistein Isoflavin that inhibits tyrosine kinase and has been
previously reported to inhibit cytokinesis
63177-57-1 Erbstatin analog EGF receptor tyrosine kinase inhibitor; known ICsq
(0.5 pg/mL); efficiently delays onset of EGF-induced
DNA synthesis
4452-06-6 ZM 449829 JAK-3 tyrosine kinase inhibitor; binds competitively to
Jak3 ATP site; inhibits STAT-5 phosphorylation and
T-cell proliferation
Lethal at 5 pM 167869-21-8 PD-98059 MAP kinase inhibitor
10537-47-0 Tyrphostin 9 PDGF receptor tyrosine kinase
172889-26-8 PP1 Src family tyrosine kinase inhibitor
134036-53-6 AG-370 PDGF receptor kinase inhibitor
548-04-9 Hypericin Protein kinase C inhibitor
Lethal at 10 pM 2-Hydroxy-5-(2,5-dihydroxy Inhibits CAM kinase Il, EGF receptor tyrosine kinase,
benzylamino) benzoic acid and pp60 kinase
6865-14-1 Palmitoyl-pL-carnitine Cl PKC inhibitor

AG-370, 3-amino-4-(1H-indol-5-ylmethylene)-2-pentenetricarbonitrile; CAM, calcium/calmodulin-dependent protein; CK, casein kinase; c-Raf1, rapidly accel-
erated fibrosarcoma serine/threonine-protein kinase; GW 5074, 3-(3,5-Dibromo-4-hydroxy-benzylidene)-5-iodo-1,3-dihydro-indol-2-one; LFM-A13, 2-Cyano-
N-(2,5-dibromophenyl)-3-hydroxy-2-butenamide; MEK, mitogen/extracellular signal-regulated kinase; PD-98059, 2-(2-Amino-3-methoxyphenyl)-4H-1-benzo-
pyran-4-one; PP1, 1-(1,1-Dimethylethyl)-1-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine; ZM 449829, 1-(2-Naphthalenyl)-2-propen-1-one.

Table S2. CIMPAQ hits identified from the ion channel inhibitor collection

Phenotypic categorization CAS number Name Pathway affected
Cytokinesis inhibitors (nonlethal) 6151-40-2 Quinidine Sodium channel blocker
21306-56-9 QX-314 Sodium channel blocker
29094-61-9 Glipizide Potassium channel blocker
113558-89-7 E-4031 Potassium channel blocker
Cytokinesis inhibitors (lethal, 5 d)  54527-84-3 Nicardipine Calcium channel blocker
2062-78-4 Pimozide Calcium channel blocker
107254-86-4 NPPB Miscellaneous channel blocker
Lethal at 5 pM 52665-69-7  Antibiotic A-23187 Intracellular calcium blocker
130495-35-1 SKF-96365 Calcium channel blocker
74764-40-2 Bepridil Calcium channel blocker
113317-61-6 Niguldipine Calcium channel blocker

NPPB, 5-Nitro-2-(3-phenylpropylamino)benzoic acid; QX-314, N-(2,6-Dimethylphenylcarbamoylmethyl)trie-
thylammonium bromide; SKF-96365, 1-[2-(4-Methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxylethyllimidazole,
1-[B-(3-(4-Methoxyphenyl)propoxy)-4-methoxyphenethyl]-1H-imidazole hydrochloride.
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Table S3. Strains used in this study

Strain Genotype Experimental applications
WT control Ax3(Rep orf") Compound testing, MPA
Ax3::NLS-tdTomato Ax3(Rep orf*):NLS-tdTomato, G418RpLD1 Compound testing
cort/""*? cort/"™" (H51151) CIMPAQ testing
race AracE Compound testing
myoll myoll (HS1) Compound testing, MPA, Western blot
kif12 kif12 (Rep orf*) Compound testing
myoll::GFPmyoll; RFPtub myoll (HS1)::GFPmyoll, G418%:pBIG; RFP-a-tubulin, Hyg®:pDRH SIM, TIRF, compound testing,
sedimentation assay, MPA
myoll::GFP3XAsp; RFPtub myoll (HS1)::GFP3XAsp, G418R:pBIG; RFP-a-tubulin, HygR:pDRH TIRF, compound testing
myoll::GFP3XAla; RFPtub myoll (HS1)::GFP3XAla, G418R:pBIG; RFP-a-tubulin, Hng:pDRH TIRF, compound testing
myoll::GFPS456L; RFPtub myoll (HS1)::GFPS456L, G418%:pBIG; RFP-a-tubulin, HygR:pDRH TIRF, compound testing
myoll::GFPS1; RFPtub myoll (HS1)::GFPS1, G418%:pBIG; RFP-a-tubulin, HygR:pDRH TIRF, compound testing
cort!"">"::GFPmyoll; RFPtub cort/"™" (HS1151):: GFPmyoll, G418R:pBIG; RFP-a-tubulin, Hyg®:pDRH TIRF, compound testing

Hyg, hygromycin; pBIG, pDRH, and pLD1, Dictyostelium expression plasmids; *

protein-tubulin; SIM, structured illumination microscopy.

, resistance; Rep, replicase open reading frame; RFPtub, red fluorescent
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