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Summary

Cell-shape changes associated with processes like cytoki-

nesis and motility proceed on several-second timescales

but are derived from molecular events, including protein-
protein interactions, filament assembly, and force genera-

tion by molecular motors, all of which occur much faster
[1–4]. Therefore, defining the dynamics of such molecular

machinery is critical for understanding cell-shape regula-
tion. In addition to signaling pathways, mechanical stresses

also direct cytoskeletal protein accumulation [5–7]. A
myosin-II-based mechanosensory system controls cellular

contractility and shape during cytokinesis and under
applied stress [6, 8]. In Dictyostelium, this system tunes

myosin II accumulation by feedback through the actin
network, particularly through the crosslinker cortexillin I.

Cortexillin-binding IQGAPs are major regulators of this sys-
tem. Here, we defined the short timescale dynamics of key

cytoskeletal proteins during cytokinesis and under mechan-
ical stress, using fluorescence recovery after photobleach-

ing and fluorescence correlation spectroscopy, to examine
the dynamic interplay between these proteins. Equatorially

enriched proteins including cortexillin I, IQGAP2, and
myosin II recovered much more slowly than actin and polar

crosslinkers. The mobility of equatorial proteins was greatly
reduced at the furrow compared to the interphase cortex,

suggesting their stabilization during cytokinesis. This
mobility shift did not arise from a single biochemical event,

but rather from a global inhibition of protein dynamics by
mechanical-stress-associated changes in the cytoskeletal

structure. Mechanical tuning of contractile protein dy-
namics provides robustness to the cytoskeletal framework

responsible for regulating cell shape and contributes to
cytokinesis fidelity.

Results and Discussion

Equatorial Proteins Have Slower Recovery Times Than

Polar Crosslinkers and Exhibit Reduced Mobility at the
Cleavage Furrow

The short timescale dynamics of proteins regulate their re-
cruitment and localization. Actin-associated proteins may be
classified into two groups: the equatorially enriched cleavage
furrow proteins and the polar or globally distributed proteins
([9], Figure 1A). We used fluorescence recovery after photo-
bleaching (FRAP) to examine the dynamics of these groups
in interphase and dividing Dictyostelium cells, to explain

differences in their spatiotemporal localization. We measured
the fluorescence intensity in the bleached region until the re-
covery curve saturated (10–25 s), allowing accurate calculation
of recovery times and immobile fractions for key cytoskeletal
proteins (see Supplemental Experimental Procedures; Figures
S1A–S1C). The characteristic recovery time is dominated by
binding-unbinding rates, while the immobile fraction repre-
sents the population that does not turn over during the exper-
iment (Figure 1B). As Dictyostelium cells are highly motile,
longer acquisitions can show additional long-scale recovery
due to cellular motility instead of protein dynamics. Thus, for
this study we only measure the fast dynamic recovery and
mobility. GFP-actin recovers within a second, establishing
the dynamicity of the actin network (Figures 1C and S1D).
The cortical actin recovery times and immobile fractions
were significantly higher than for GFP or cytoplasmic GFP-
actin (Figures 1C and S1D). Thus, cortical GFP-actin dynamics
reported by FRAP are dominated by actin filaments, even
thoughw70% of the total actin (250 mM) in Dictyostelium cells
is monomeric [11].
Polar crosslinkers, including dynacortin and fimbrin, modu-

late cell mechanics and cortical tension, while equatorial
proteins—myosin II and cortexillin I—regulate contractility
during cytokinesis [9, 12]. As cytokinesis is largely a mechan-
ical shape change process, several equatorial proteins also
mediate cellular responses to externally applied mechanical
stresses. The mechanoenzyme, myosin II, is the major driver
of contractility and accumulates in response to internally or
externally generated mechanical stresses [5–7]. This stress-
dependent myosin II accumulation results from cooperative
interactions between the actin-bound myosin heads and the
actin-bundling protein cortexillin I [4]. Scaffolding proteins
IQGAP1 and IQGAP2 bind to cortexillin I [13–15] and regulate
myosin II accumulation [6]. IQGAP1 inhibits myosin II recruit-
ment, while IQGAP2 relieves this inhibition. Consequently,
the iqgap1/2 double-null mutant (iqg1/2) exhibits enhanced
myosin II accumulation under stress. IQGAP2 also transmits
mechanical signals to spindle signaling proteins (Kif12/IN-
CENP), promoting symmetric cell division.
Genetic, biochemical, and mechanical studies demon-

strated crosstalk between the polar and equatorial modules
[10, 16]. However, how these proteins interact dynamically to
control these processes is unknown. The molecular events
governing cytokinesis, including motor activity, actin filament
turnover and rearrangement, and crosslinker interactions,
occur at much faster timescales than the associated cell-
shape changes. Hence, these short timescale cytoskeletal
dynamics must be defined to develop a mechanistic under-
standing of how cells respond to physical forces.
Interestingly, we observed that actin dynamics changed

during cytokinesis as the recovery time increased and the
immobile fraction decreased in the furrow (Figures 1D and
S1E). In comparison, the dynacortin and fimbrin recovery
times at the furrow increased significantly, while their mobility
was unaffected (Figure 1D [9]). The polar cortex dynamics of
dynacortin and fimbrin were similar to interphase values, while
actin showed increasedmobility at the poles (data not shown).
Myosin II, cortexillin I, and IQGAP2, which localize to the cleav-
age furrow, recovered more slowly (1.5–5 s) than actin or polar*Correspondence: dnr@jhmi.edu

Please cite this article in press as: Srivastava and Robinson, Mechanical Stress and Network Structure Drive Protein Dynamics during
Cytokinesis, Current Biology (2015), http://dx.doi.org/10.1016/j.cub.2015.01.025

http://dx.doi.org/10.1016/j.cub.2015.01.025
http://dx.doi.org/10.1016/j.cub.2015.01.025
mailto:dnr@jhmi.edu


crosslinkers in the interphase cortex (Figures 1D, S2A, and
S2B). Their much slower recovery than that of soluble GFP
demonstrates that the fluorescence recovery is dominated
by unbinding events at the cortex instead of diffusion. Further,
their cytoplasmic recovery times are significantly faster than
those in the cortex (Figures 1C and S1D), indicating that the
equatorial proteins form stable complexes at the cortex with
slower unbinding, as compared to polar crosslinkers, which
recover more quickly. Cortexillin I recovery was slower at the
furrow than in interphase, while myosin II and IQGAP2 showed
no change. In contrast, myosin II recovery slows in anaphase
as compared to metaphase in Drosophila S2 cells [17].

The equatorial proteins were much more mobile during
interphase compared to other proteins (Figure 1D). The
mobility of cortexillin I and IQGAP2 in the interphase cortex
was comparable to those in the cytoplasm (Figures 1C and
S1D). However, the immobile fractions for these proteins
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B Figure 1. Changes in Protein Dynamics during

Cytokinesis

(A) Cytoskeletal proteins are asymmetrically

localized during cytokinesis.

(B) From FRAP analysis, the network release rate

is inversely proportional to the recovery time (t),

while the immobile fraction (dark red circles) rep-

resents the protein population that does not turn-

over during the experiment. The protein mobile

fraction is represented by light orange circles.

The thick and thin lines represent the immobile

and mobile populations of actin, respectively.

(C) Recovery times and immobile fractions for

soluble GFP and cytoskeletal proteins at the cell

cortex and in the cytoplasm as measured by

FRAP. Cytoskeletal proteins show slower recov-

ery in the cortex than in the cytoplasm.

(D) Recovery times and immobile fractions of

different cytoskeletal proteins in the interphase

cortex and at the cleavage furrow. Equatorially

enriched proteins—myosin II, cortexillin I, and

IQGAP2—have markedly reduced mobility at

the cleavage furrow. Values plotted are mean 6

SEM; sample sizes are listed on the bars (see

Table S1).

Asterisks represent the significance of difference

between interphase and furrow measurements

where ns, p > 0.05; *p < 0.05; **p < 0.005; ***p <

0.0005 based on ANOVA with Fisher’s LSD

post-test. #FRAP data for myosin II are repro-

duced from [10] and for dynacortin and fimbrin

from [9]. See also Figure S1.

increased significantly at the cleavage
furrow (Figures 1D and S1C). Themagni-
tude of mobility shift for cortexillin I
and IQGAP2 was higher than for myosin
II [9, 10, 18]. Thus, we focused on cor-
texillin I and IQGAP2 dynamics for the
remainder of this study. The reduction
in protein mobility at the furrow sug-
gests that these proteins are stabilized
at the cortex during furrow ingression,
consistent with their slower recovery
times. The high immobile fractions also
likely promote their furrow enrichment.
Therefore, determining the factors that
cause this mobility shift is essential to

explaining how the contractile proteins accumulate and
remodel during furrow ingression.

Genetic Control of Protein Dynamics Is Suppressed at the

Furrow
Previous genetic studies established the functional interplay
between myosin II, cortexillin I, and the IQGAPs in governing
protein accumulation and contractility at the cleavage furrow
and in responding to mechanical stress [6] (Figure 2A). Thus,
we tested whether the same genetic relationships also dictate
protein dynamics, regulating their furrow accumulation. We
conducted FRAP on cortexillin I and IQGAP2 at the interphase
cortex and the furrow in cell lines lacking key components of
this mechanoresponsive system.
Cortexillin I recovery time increased at the furrow compared

to the interphase cortex in wild-type (WT) cells (Figures 2B
and 2C). However, this slower recovery was not observed in
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myosin II (myoII) and iqgap2 (iqg2) -null cells (Figures 2C and
S2A). In contrast, while IQGAP2’s recovery time was unaltered
at the furrow in WT cells, IQGAP2 had significantly higher re-
covery time at the furrow in myoII cells (Figures 2D and S2B).
Both cortexillin I and IQGAP2 had >2-fold higher immobile
fractions at the cleavage furrow (Figures 2B–2D, S2A, and

S2B). Cortexillin I immobile fractions were higher in interphase
myoII and iqg2 compared to WT but were unchanged at the
furrow in these mutants (Figures 2C and S2A). This demon-
strates that while myosin II and IQGAP2 are important for
maintaining a mobile pool of cortexillin I, additional factors
such asmechanical stress could dominate cortexillin I mobility
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Figure 2. Changes in Cortexillin I and IQGAP2 Dynamics at the Cleavage Furrow

(A) Amyosin II-cortexillin I-actin-basedmechanosensory system regulates contractility at the furrow, and IQGAP proteins regulate accumulation of the con-

tractile proteins.

(B) Confocal images showing photobleaching and fluorescence recovery of GFP-cortexillin I and GFP-IQGAP2 in the cortex of interphase cells and at the

cleavage furrow.

(C and D) Recovery times and immobile fractions for GFP-cortexillin I (C) and GFP-IQGAP2 (D) in different genetic mutants in the cortex of interphase and

dividing cells.

(E) Recovery times and immobile fractions for GFP-actin in different genetic mutants in the interphase cortex.

(F and G) Cytoplasmic diffusion times measured by FCS for GFP-cortexillin I (F) and GFP-IQGAP2 (G) in different mutants (see Table S3).

(H) Schematic showing the effect of key cytoskeletal proteins on the dynamics of cortexillin I and IQGAP2, based on FRAP measurements.

Values plotted are mean6 SEM; sample sizes are listed on the bars (see Table S1). p values represented as follows: ns, p > 0.05; *p < 0.05; **p < 0.005; ***p <

0.0005 based on ANOVA with Fisher’s LSD post-test. Asterisks above the furrow measurement represent significance of difference from interphase values.

Comparisons across mutants are represented by asterisks above the connecting lines. Scale bar, 5 mm. See also Figure S2.
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at the furrow, ensuring its recruitment during cytokinesis, as
cortexillin I also shows mechanical-stress-dependent accu-
mulation [6, 7]. Consistently, the cleavage furrow localization
of cortexillin I was not affected in any of the mutants tested.
IQGAP2 immobile fraction was also higher in interphasemyoII
as compared to WT (Figures 2D and S2B), suggesting that
myosin II drives the dynamic remodeling of the cytoskeletal
network. Myosin II’s full power stroke is required for this
mobility regulation, as the 10-fold slower S456L mutant
myosin II, which only takes a 2-nm step (1/4 of WT) [7, 9, 19],
fails to rescue the IQGAP2 and cortexillin I mobility defects
seen in myoII cells (Figures S2C and S2D). Although myosin
II regulates the actin cortex dynamics in epithelial cells [20,
21], deletion ofmyosin II, cortexillin I, or IQGAP2 had no impact
on actin dynamics (Figures 2E and S2E).

The deletion of IQGAP1 (iqg1) did not affect the interphase or
furrow dynamics of either cortexillin I or IQGAP2 (Figures 2C
and 2D), in agreement with its role as a damper of stress-
dependent protein accumulation [6]. Because IQGAP1 and
IQGAP2 interact with distinct domains of cortexillin I [13–15],
we also studied cortexillin I dynamics in the iqg1/2 double
mutant. Here, cortexillin I still showed faster recovery at the
furrow as compared to WT, similar to iqg2 (Figures S2F and
S2G). However, the immobile fraction at the furrow was higher
in the double mutant compared to the WT or iqg2 mutant
(Figures S2F and S2G). The iqg1/2 cells show enhanced
stress-dependent protein accumulation, while iqg2 cells are
unresponsive due to IQGAP1 inhibition [6]. Thus, the reduced
mobility of cortexillin I at the furrow is likely due to mechanical
stresses locking in the cytoskeletal network of these highly
mechanoresponsive cells.

To examine molecular scale events driving the protein dy-
namics changes, we used fluorescence correlation spectros-
copy (FCS) to measure the in vivo diffusion of cortexillin I and
IQGAP2acrossvariousmutantbackgrounds (seeSupplemental
Experimental Procedures; Figures S1F–S1H). FCS experiments
were performed in the cytoplasm as cell movement precluded
positioning the confocal volume at the cortex. We compared
the diffusion time for cortexillin I and GFP in the cytoplasm to
that of purified proteins in vitro. GFP had 5-fold reduction in
diffusion time in cells while cortexillin I showed >8-fold slower
diffusion (Figure S1H), confirming that cortexillin I is a part of
large molecular assemblies. The deletion of myosin II did not
impact the cytoplasmic diffusion of either cortexillin I or IQGAP2
though it increased the immobile fraction of both proteins at the
cortex (Figures 2F and 2G), implying that myosin II affects pro-
tein dynamics by regulating contractility and cytoskeletal struc-
ture. The diffusion time for cortexillin I was increased byw30%
in iqg2 cells (Figure 2F). This suggests that without IQGAP2, the
effective mass of the cortexillin I complex roughly doubles as
diffusion time is approximately proportional to the cube root
of the effectivemolecular weight of the diffusing species. As ex-
pected, cortexillin I diffusion also showed a similar trend in the
iqg1/2 doublemutant. Thus, the changes in cortexillin I mobility
could arise from changes in biochemical interactions in the
absence of IQGAP2 (Figures 2C and S2F).

Collectively, the FRAP and FCS experiments enabled us to
attribute changes in cortexillin I mobility to either protein-pro-
tein interactions (in iqg2 and iqg1/2) or to cortex restructuring
(in myoII). We demonstrated that the dynamics of cortexillin I
and IQGAP2 at the cleavage furrow are well conserved across
mutants, though differences emerge during interphase (Fig-
ure 2H). As cleavage furrow contractility is common to all cells,
we hypothesized that mechanical stresses acting at the furrow

could override the biochemical signals to define cleavage
furrow protein dynamics. Physical mechanisms such as
myosin-II-mediated force generation, Laplace pressure-medi-
ated furrow thinning, and protrusive forces from the polar cor-
tex drive furrow ingression [22]. Thus, we next examined
whether mechanical stresses at the cleavage furrow were
sufficient to shift the dynamics of these mechanoresponsive
proteins.

Mechanical Stress Drives the Reduction in Cleavage
Furrow Mobility of Cortexillin I and IQGAP2

In addition to enrichment at the cleavage furrow, myosin II,
cortexillin I, and IQGAP2 accumulate to sites of externally
applied mechanical stress, thereby allowing the cell to retract
against this stress [5–7]. Hence, we applied compression using
agarose overlay to test if mechanical stress, as compared to
biochemical signaling, affects protein dynamics changes at
the cleavage furrow. Flattening of the cells drives the accumu-
lation of the mechanoresponsive proteins studied here to the
cell cortex to counter this stress [3, 6]. The ratio of fluores-
cence intensity in the cortex to that in the cytoplasm is depen-
dent on the thickness of agarose and plating density (T. Luo
and D.N.R., unpublished data), confirming that the increase
in cortical intensity is driven by mechanical stress and is not
simply due to volume effects. Further, soluble GFP does not
change in cortical intensity upon compression [6].
We examined cortexillin I and IQGAP2 interphase dynamics

in presence or absence of compression across mutants stud-
ied above (Figure 3A). Cortexillin I exhibited a slower recovery
time under compression, but IQGAP2’s recovery time was un-
affected (Figures 3B, 3C, S3A, and S3B). Both cortexillin I and
IQGAP2 showed a >2-fold increase in the immobile fraction
under compression, similar to the observation at the furrow
(Figures 3B, 3C, S3A, and S3B). By FCS, the cortexillin I diffu-
sion time also doubled under compression, while IQGAP2
diffusion was unaffected (Figure 3D). Both the recovery time
and immobile fraction for IQGAP2 increased in compressed
myoII compared to WT (Figures 3C and S3B). Cortexillin I
and IQGAP2 dynamics under compression did not change in
other mutants as compared to WT (Figures 3B, 3C, 3F, S3A,
and S3B). The cortexillin I mobility shift in iqg2 cells under
compression was higher than that observed at the furrow
(Figure 2C), suggesting that under compression cortexillin I
directly responds to mechanical stress, compared to the
cleavage furrow where biochemical signals through IQGAP2
also contribute to cortexillin I mobility. Importantly, both
compression and cleavage furrow showed a consistent, >2-
fold increase in immobile fractions of both cortexillin I and
IQGAP2 compared to the unstressed, interphase cortex
across various mutants (Figures 2C, 2D, 3B, and 3C). This
validates the importance of mechanical stress in driving the
dynamics of equatorially enriched proteins at the cleavage
furrow, thereby ensuring their robust localized accumulation.
In addition, bymeasuring dynamics of cortexillin I and IQGAP2
in cells lacking the small GTPase racE (racE), we assessed the
contribution of cortical tension on protein dynamics, as racE is
a major regulator of cortical mechanics [9, 23, 24]. For cortex-
illin I, the immobile fraction was higher and the recovery time
was shorter in racE cells, while IQGAP2 dynamics were un-
changed (Figures S3D and S3E). Thus, cortexillin dynamics
are not only affected by mechanical stress, but also by
general cortical mechanics. Furthermore, the mobility and re-
covery times of GFP-actin were not affected by compression
(Figure S1E). Overall, cortexillin I dynamics are more sensitive

4

Please cite this article in press as: Srivastava and Robinson, Mechanical Stress and Network Structure Drive Protein Dynamics during
Cytokinesis, Current Biology (2015), http://dx.doi.org/10.1016/j.cub.2015.01.025



to compressive stresses than the dynamics of IQGAP2, actin,
and GFP are.

As compression reduced cell height by up to 4-fold, we
measuredGFP dynamics to examine the impact of altered pro-
tein transport and cellular structure upon compression. The
immobile fraction and diffusion time for GFP nearly doubled
(Figures 3D, 3E, and S3C), suggesting sieving effects may
become significant under compression. The altered GFP dy-
namics under compression confirm that network structure
and intracellular environment are important contributors to

mechanical-stress-dependent protein dynamics. However,
in myoII cells, GFP FRAP dynamics did not change upon
compression; rather, GFP diffusion was faster in compressed
myoII cells (Figures 3D, 3E, and S3C), suggesting that myosin
II is important for stabilizing the cortex under mechanical
stress, and in its absence the cortical dynamics are dominated
by passive diffusive behaviors [25]. As the actin cytoskeleton
forms a highly dense meshwork in Dictyostelium, structural
changes between interphase and furrow cortex cannot be
resolved by confocal and electron microscopy [9]. Thus, we
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Figure 3. Mechanical Stress Drives Changes in Dynamics and Mobility of Cortexillin I and IQGAP2

(A) Confocal images showing photobleaching and fluorescence recovery of GFP-cortexillin I and GFP-IQGAP2 in the cortex of uncompressed cells (control)

and cells compressed using agarose overlay (comp).

(B and C) Recovery times and immobile fractions for GFP-cortexillin I (B) and IQGAP2 (C) in different genetic mutants in absence or presence of compressive

stress.

(D) Cytoplasmic protein diffusion in absence or presence of compressive stress.

(E) Recovery times and immobile fractions for GFP in WT and myoII cells in absence or presence of compressive stress.

(F) Schematic showing the effect of key cytoskeletal proteins on the dynamics of cortexillin I and IQGAP2 under compression, based on FRAP measure-

ments.

Values plotted are mean6 SEM; sample sizes are listed on the bars (see Table S1). p values represented as follows: ns, p > 0.05; *p < 0.05; **p < 0.005; ***p <

0.0005 based on ANOVA with Fisher’s LSD post-test. Asterisks above the compression measurement represent significance of difference from the control.

Comparisons across mutants are represented by asterisks above the connecting lines. Scale bar, 5 mm. See also Figure S3.
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next chemically perturbed the cytoskeleton to determine how
these network properties affect proteinmobility anddynamics.

Alterations to Cortical Structure and Mechanics Shift

Mobility of Cortexillin I
To test the effect of cytoskeletal structure on protein dy-
namics, we perturbed the actin cytoskeleton by treating
the cells with either latrunculin-A or jasplakinolide. Latruncu-
lin-A prevents F-actin assembly by sequestering free G-actin
monomers, while jasplakinolide enhances actin filament
nucleation. We quantified changes in F-actin amount upon
treatment with latrunculin-A and jasplakinolide by measuring
the relative fluorescence intensity of cells stained with phal-
loidin 15 min post-drug treatment [4] (Figures 4A, 4B, and
S4A). Anti-actin staining was also used to visualize changes
in actin level and cytoskeletal morphology (Figures 4A, 4B,
and S4A). Interestingly, even with 5 mM latrunculin-A, cells
still had w50% residual F-actin (w35 mM) (Figure 4B), sug-
gesting sufficient F-actin binding sites for the w1 mM actin
crosslinkers [3, 26, 27]. The residual F-actin mostly concen-
trated in puncta illustrating discontinuity of the cytoskeletal
network (Figure 4A), also reflected by the increase in the re-
covery time and immobile fraction of GFP even though its
diffusion is unaffected (Figures 4D, 4E, and S4D). Latruncu-
lin-A had a drastic effect on cellular mechanics, as 1 mM la-
trunculin-A-treated cells had 12-fold lower cortical tension
as measured by micropipette aspiration (Figures 4C, S4B,
and S4C), consistent with the 85% reduction in viscoelas-
ticity previously reported for latrunculin-B treatment [12].
Latrunculin-A-treated (5 mM) cells were too soft for mechan-
ical measurements. In contrast, jasplakinolide enhanced the
cellular F-actin levels w4-fold inducing the formation of F-
actin clusters (Figures 4A, 4B, and S4A) and increased
cortical tension slightly (Figures 4C, S4B, and S4C). Jaspla-
kinolide also increased the recovery time of soluble GFP
while not affecting its immobile fraction or diffusion (Figures
4D and S4D). Thus, we were able to directly probe the
impact of changes in cytoskeletal structure and mechanics
on protein dynamics by using these two compounds.

Latrunculin-A or jasplakinolide treatment did not signifi-
cantly affect cortexillin I recovery time, but both compounds
appreciably increased its immobile fraction (Figures 4D and
S4D). Latrunculin-A also increased the recovery time and
immobile fraction of IQGAP2 (Figures 4D and S4D). IQGAP2
diffusion was insensitive to both drugs (Figure 4E). However,
cortexillin I showed two differently diffusing populations with
latrunculin-A treatment—one with a similar diffusion time as
the control (w2 ms) and another much slower population
(w8 ms) (Figure 4E). This slower population likely reflects the
diffusion of cortexillin I in actin clusters observed upon F-actin
staining. Though jasplakinolide treatment promoted F-actin
cluster formation, its effect on protein dynamics was not as
pronounced (Figures 4D, 4E, and S4D). These results demon-
strate that the connectivity of the cytoskeleton network is
extremely important for maintaining normal protein dynamics.
Remarkably, cortexillin I remained localized at the furrow in
latrunculin-A-treated cells, though its distribution was non-
uniform (Figure 4F). Its recovery time and mobility in the
furrow were unaffected by latrunculin-A (Figures 4G and
S4E). Thus, the cortexillin I immobile fraction under mechani-
cal stress is either saturated or becomes independent of
network structure. In contrast, myosin II completely lost its
cortical localization upon latrunculin-A treatment and formed
puncta throughout the cell [4].

Latrunculin-A also increased actin mobility and recovery
rate, while jasplakinolide had no effect (Figures 4D and S4D).
The increased actinmobility with latrunculin-A is quantitatively
similar to that at the furrow (Figures 1D and 4D), further vali-
dating the importance of cytoskeletal restructuring during
cytokinesis (Figure 4H). These dynamic features also explain
why actin does not show a significant accumulation at the
cleavage furrow or uponmicropipette aspiration [3, 9]. Overall,
perturbations to the cytoskeletal structure are sufficient to
affect changes in the dynamics of cytoskeletal proteins. Simi-
larly, protein dynamics are also affected by mechanical stress,
which leads to accumulation of equatorial proteins during
cytokinesis (Figure 4H).

Conclusions

Mechanical stresses are important for driving cellular pro-
cesses like cell division and motility and play a major role in
determining cell fate [6, 28, 29]. Understanding the effect of
mechanical stress on protein dynamics is critical for having
predictive power over these cellular behaviors. Here, we
identified that equatorial protein mobility significantly reduces
at the cleavage furrow, while that of polar crosslinkers is
unchanged (Figure 1). Both biochemical associations and
myosin II-mediated remodeling affect protein dynamics (Fig-
ure 2). Compressive stress applied externally also leads to
reduced mobility (Figure 3). The molecular mechanisms that
result in this drastic reduction in protein mobility need to be
examined. Even when key contractile proteins are eliminated,
the cytoskeleton is capable of maintaining fairly normal dy-
namics (Figures 2 and 3). Interestingly, most of themutant phe-
notypes in protein dynamics are seen in the unstressed, inter-
phase cortex, while the dynamics are unchanged across
mutants during cytokinesis or upon compression (Figures 2
and 3). Thus, the cell’s contractile system is built as a highly
adaptive machine, maintaining fairly normal dynamics under
mechanical stress ensuring fidelity of protein recruitment.
In contrast, in other scenarios mechanical stress can exag-
geratemanymutant phenotypes. For example,myoII-null cells
cannot perform cytokinesis without substrate adhesion or
when challenged by mechanical stress [5, 30]. Further,
changes to cytoskeletal structure are sufficient to drive similar
changes in protein dynamics, highlighting the importance of
network properties in governing protein and cellular behaviors
(Figure 4). Myosin II emerges as the major driver of active pro-
cesses in the cortex, in accordance with previous studies (Fig-
ures 2 and 3) [25].
The mechanical tuning of protein dynamics and recruitment

is an important mode of regulating cellular responses to phys-
ical stimuli and requires protein-protein interactions to be sta-
bilized or disrupted under mechanical load. Protein-protein
stabilization can induce protein clustering and provide signal
amplification, while disruption can lead to signal dissipation.
This is the classical paradigm for any signal transduction sys-
tem. Basic molecular mechanisms for protein clustering in
response to mechanical stress include catch bond formation
and structural cooperativity, while slip bonds allow for force-
induced disassembly. These fundamentals are important in
directing macromolecular assembly of actin crosslinking pro-
teins [3, 4, 31, 32]. Here we have demonstrated that these
mechanisms are also applicable to scaffolding proteins like
IQGAP2, emphasizing the importance of network structure
and higher order self-assembly in governing cellular behavior.
Indeed, cellular systems are engineered as smart materials
where many of the constituents are mechanoresponsive.
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Experimental Procedures

Experimental procedures for Dictyostelium cell culture, agarose over-

lay, FRAP analysis, FCS analysis, latrunculin-A and jasplakinolide

treatment, F-actin quantification by phalloidin staining, and cortical

tension measurements by micropipette aspiration are given in Supple-

mental Experimental Procedures. All curve fitting and statistical anal-

ysis was done using KaleidaGraph (Synergy Software). Significance of

difference was determined using ANOVA with a Fisher’s LSD post-

test.

A

D

E

H

G

B C

F

Figure 4. Changes in Cytoskeletal Network Structure Result in Altered Protein Dynamics

(A) Confocal images of TRITC-phalloidin and anti-actin stained cells show changes in the cytoskeletal architecture 15 min post-treatment with 5 mM latrun-

culin-A or 2 mM jasplakinolide.

(B) Quantification of relative F-actin amount based on the fluorescence intensity of TRITC-phalloidin and anti-actin staining.

(C) Cortical tension measured by micropipette aspiration on cells treated with 1 mM latrunculin-A or 2 mM jasplakinolide.

(D) Recovery times and immobile fractions of soluble GFP, GFP-actin, GFP-cortexillin I, and GFP-IQGAP2 in untreated, 5 mM latrunculin A, or 2 mM jaspla-

kinolide-treated cells as measured by FRAP (see Table S2).

(E) Diffusion times for GFP, GFP-cortexillin I, andGFP-IQGAP2 in untreated, 5 mM latrunculin-A, or 2 mM jasplakinolide-treated cells asmeasured by FCS (see

Table S3). Cortexillin I shows two differently diffusing populations upon latrunculin-A treatment, while the diffusion of GFP and IQGAP2 is unaffected by the

pharmacological treatment.

(F) Confocal images showing cleavage furrow recruitment of GFP-cortexillin I in untreated and 5 mM latrunculin-A-treated cells.

(G) Recovery times and immobile fractions of GFP-cortexillin I in interphase and dividing cells with or without 5 mM latrunculin-A treatment.

(H) A schematic showing the changes in protein mobility arise from cytoskeletal rearrangement under mechanical stress or upon latrunculin-A treatment.

Under high stress, the crosslinkers show reduced mobility leading to accumulation, while actin mobility increases even though filament amount is relatively

unchanged. Upon latrunculin-A treatment, F-actin amount is reduced, and actin mobility increases while the crosslinker mobility decreases significantly.

Values plotted aremean6 SEM; sample sizes are listed on the bars (see Table S2). Asterisks represent significance of difference fromDMSO control, where

p values represented as follows: ns, p > 0.05; *p < 0.05, **p < 0.005; ***p < 0.0005 based on ANOVA with Fisher’s LSD post-test. Scale bar, 5 mm. See also

Figure S4.
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Supplemental Information includes Supplemental Experimental Proce-

dures, four figures, and four tables and can be found with this article online
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Table S1: Mean recovery times () and mean immobile fractions (Fi) for proteins in interphase 

cells, at the cleavage furrow and in compressed cells; FRAP Analysis 

 

GFP-cortexillin I 

  Interphase  Furrow  Compression 

WT  2.1 ± 0.2 s, 0.14 ± 0.02 (23)  4.7 ± 0.6 s, 0.36 ± 0.04 (17)  2.9 ± 0.3 s, 0.46 ± 0.06 (14) 
myoII  3.2 ± 0.5 s, 0.26 ± 0.04 (18)  4.1 ± 0.3 s, 0.43 ± 0.04 (23)  2.6 ± 0.5 s, 0.57 ± 0.06 (15) 
iqg2  2.9 ± 0.2 s, 0.29 ± 0.05 (21)  3.6 ± 0.3 s, 0.36 ± 0.05 (23)  2.7 ± 0.3 s, 0.56 ± 0.03 (17) 
iqg1  2.5 ± 0.3 s, 0.20 ± 0.04 (15)  5.8 ± 0.9 s, 0.44 ± 0.05 (15)  2.4 ± 0.3 s, 0.50 ± 0.05 (15) 
iqg1/2  2.4 ± 0.2 s, 0.27 ± 0.04 (23)  2.7 ± 0.4 s, 0.56 ± 0.05 (17)    
racE  1.1 ± 0.2 s, 0.31 ± 0.07 (9)       
S456L  3.4 ± 0.4 s, 0.34 ± 0.03 (23)       

 

GFP-IQGAP2 

  Interphase  Furrow  Compression 

WT  1.6 ± 0.2 s, 0.10 ± 0.02 (14)  2.1 ± 0.2 s, 0.48 ± 0.04 (16)  1.7 ± 0.1 s, 0.27 ± 0.04 (20) 
myoII  1.6 ± 0.2 s, 0.30 ± 0.04 (18)  3.3 ± 0.3 s, 0.48 ± 0.05 (15)  2.7 ± 0.5 s, 0.64 ± 0.04 (15) 
ctxA  1.5 ± 0.2 s, 0.06 ± 0.02 (13)  2.0 ± 0.3 s, 0.36 ± 0.04 (13)  2.1 ± 0.2 s, 0.30 ± 0.02 (14) 
iqg1  1.5 ± 0.3 s, 0.16 ± 0.03 (18)  2.7 ± 0.3 s, 0.43 ± 0.04 (17)  2.3 ± 0.3 s, 0.33 ± 0.04 (16) 
racE  1.4 ± 0.4 s, 0.17 ± 0.04 (16)       
S456L  1.8 ± 0.2 s, 0.22 ± 0.04 (13)       

 

GFP-actin 

  Interphase  Furrow  Compression 

WT  0.75 ± 0.15 s, 0.39 ± 0.05 (17)  1.3 ± 0.2 s, 0.28 ± 0.04 (17)  0.70 ± 0.06 s, 0.29 ± 0.01 (14) 
myoII  0.68 ± 0.12 s, 0.43 ± 0.05 (11)       
ctxA  0.61 ± 0.12 s, 0.35 ± 0.05 (10)       
iqg2  0.46 ± 0.03 s, 0.34 ± 0.05 (15)       
racE  0.61 ± 0.18 s, 0.25 ± 0.07 (10)       

 

GFP 

  Interphase  Furrow  Compression 

WT  0.26 ± 0.03 s, 0.12 ± 0.02 (27)  0.27 ± 0.07 s, 0.12 ± 0.03 (12)  0.66 ± 0.12 s, 0.26 ± 0.04 (14) 

myoII  0.35 ± 0.03 s, 0.14 ± 0.03 (15)     0.50 ± 0.06 s, 0.11 ± 0.02 (15)  

 

The values represent mean ± SEM for recovery times and immobile fractions. The number of 

measurements is given in parentheses.  

 

  



 

Table S2: Mean recovery times () and mean immobile fractions (Fi) for proteins latrunculin-A 

or jasplakinolide treated cells; FRAP Analysis 

 

  DMSO  5 μM Latrunculin-A  2 μM Jasplakinolide 

GFP cortI 
(interphase) 

 2.5 ± 0.4 s, 0.25 ± 0.04 (14)  3.5 ± 0.6 s, 0.53 ± 0.05 (13)  2.2 ± 0.4 s, 0.46±0.06 (15) 

GFP cortI 
(furrow) 

 4.6 ± 0.8 s, 0.53 ± 0.10 (9)  6.2 ± 1.1 s, 0.60 ± 0.04 (16)    

GFP IQGAP2  1.5 ± 0.2 s, 0.19 ± 0.03 (14)  2.0 ± 0.2 s, 0.26 ± 0.03 (19)  1.1 ± 0.1 s, 0.14±0.02 (23) 
GFP actin  0.66 ± 0.05 s, 0.36 ± 0.02 (68)  1.1 ± 0.13 s, 0.25 ± 0.03 (41)  0.82 ± 0.08 s, 0.44±0.03 (22) 
GFP  0.26 ± 0.03 s, 0.12 ± 0.02 (27)  0.40 ± 0.03 s, 0.20 ± 0.02 (15)  0.39 ± 0.03 s, 0.10±0.02 (15) 

 

The values represent mean ± SEM for recovery times and immobile fractions. The number of 

measurements is given in parentheses.  

 

  



 

Table S3: Cytosolic diffusion times (  ) and diffusion coefficients (    ) for proteins as measured by FCS 

 

Diffusion in PBS at 220C 

 Molecular weight (kDa) Diffusion time (  ) Diffusion Coefficient (Deff) 

Rhodamine 6G 0.48 kDa 0.033 ± 0.002 ms (34) 426 µm2/s* 

His-mCherry 28 kDa 0.15 ± 0.01 ms (11) 94 µm2/s 
(Reported value: 95 µm2/s*) 

His-GFP-cortexillin-I 80 kDa 0.28 ± 0.02 ms (11) 50.2 µm2/s 

 

Diffusion in cytoplasm at 220C 

Cell line Cortexillin I IQGAP2 GFP 

WT control 2.4 ± 0.2 ms (20), Deff = 5.8 µm2/s 2.9 ± 0.3 ms (18), Deff = 4.8 µm2/s 0.78 ± 0.05 ms (20), Deff = 18 µm2/s 

WT + compression 4.0 ± 0.3 ms (17), Deff = 3.5 µm2/s 3.4 ± 0.4 ms (16), Deff = 4.1 µm2/s 1.5 ± 0.1 ms (16), Deff = 9.4 µm2/s 

myoII 2.6 ± 0.2 ms (18), Deff = 5.4 µm2/s 2.9 ± 0.2 ms (11), Deff = 4.8 µm2/s 1.4 ± 0.2 ms (15), Deff = 10 µm2/s 

myoII + compression 3.9 ± 0.4 ms (12), Deff = 3.6 µm2/s - 0.69 ± 0.06 ms (14), Deff = 20 µm2/s 

iqg2 3.1 ± 0.2 ms (16), Deff = 4.5 µm2/s - - 

iqg1/2 3.7 ± 0.3 ms (16), Deff = 3.8 µm2/s - - 

ctxA - 2.6 ± 0.3 ms (12), Deff = 5.4 µm2/s - 

 

Treatment Cortexillin I IQGAP2 GFP 

DMSO 2.8 ± 0.4 ms (12), Deff = 5.0 µm2/s 2.7 ± 0.4 ms (15), Deff = 5.2 µm2/s 0.75 ± 0.10 ms (13), Deff = 19 µm2/s 

5 μM latrunculin-A 
P1:2.4 ± 0.1 ms (8), Deff = 5.8 µm2/s 
P2:8.1 ± 0.5 ms (7), Deff = 1.7 µm2/s 

3.6 ± 0.4 ms (16), Deff = 3.9 µm2/s 1.1 ± 0.1 ms (25), Deff = 13 µm2/s 

2 μM jasplakinolide 3.2 ± 0.2 ms (20), Deff = 4.4 µm2/s 3.2 ± 0.4 ms (18), Deff = 4.4 µm2/s 0.86 ± 0.07 ms (18), Deff = 16 µm2/s 

 

The values represent mean ± SEM for diffusion times. The numbers of measurements is given in parentheses. 

* Diffusion coefficients for rhodamine 6G and GFP were reported in Petrášek and Schwille (2008) [S1]. 

  



 

Table S4: Cell strains used in this study 

Strain Genotype Experimental Applications 

WT Ax3(Rep orf+) 
Phalloidin staining/F-actin 
quantification; MPA (cortical tension) 

WT::GFP Ax3(Rep orf+)::Hyg
R
:pDRH; GFP, G418

R
:pDM181 FRAP, FCS 

WT::GFP myoII(HS1)::mCH-myoII, Hyg
R
:pDRH; GFP, G418

R
:pDM181 FRAP 

WT::GFP-actin KAx3(RF)::Hyg
R
:pDRH; GFP-actin, G418

R
:pDM181 FRAP 

WT::GFP-actin myoII(HS1)::mCH-myoII, Hyg
R
:pDRH; GFP-actin, G418

R
:pDM181 FRAP 

WT::GFP-cortexillin I KAX3(RF)::GFP-cortI, Hyg
R
:pDRH; G418

R
:pDM181 FRAP, FCS 

WT::GFP-IQGAP2 KAX3::RFP-α-tubulin, Hyg
R
:pDRH; GFP-IQGAP2, G418

R
:pEXP4 FRAP, FCS 

myoII::GFP-actin myoII(HS1)::RFP-α-tubulin, Hyg
R
:pDRH; GFP-actin, G418

R
:pDM181 FRAP 

myoII::GFP-cortexillin I myoII(HS1)::GFP-cortI, Hyg
R
:pDRH; G418

R
:pDM181 FRAP, FCS 

myoII::GFP-IQGAP2 myoII(HS1)::RFP-α-tubulin, Hyg
R
:pDRH; GFP-IQGAP2, G418

R
:pEXP4 FRAP, FCS 

myoII::GFP myoII(HS1)::Hyg
R
:pDRH; GFP, G418

R
:pDM181 FRAP, FCS 

S456L::GFP-cortexillin I myoII(HS1)::GFP-cortI, Hyg
R
:pDRH;  myoII(S456L), G418

R
:pBIG FRAP 

S456L::GFP-IQGAP2 myoII(HS1)::CFP-myoII(S456L), Hyg
R
:pDRH; GFP-IQGAP2, G418

R
:pEXP4 FRAP 

ctxA::GFP-actin cortI(RF)::RFP-α-tubulin, Hyg
R
:pDRH; GFP-actin, G418

R
:pDM181 FRAP 

ctxA::GFP-IQGAP2 cortI(RF)::RFP-α-tubulin, Hyg
R
:pDRH; GFP-IQGAP2, G418

R
:pEXP4 FRAP, FCS 

iqg2::GFP-actin iqgap2(RF)::RFP-α-tubulin, Hyg
R
:pDRH; GFP-actin, G418

R
:pDM181 FRAP 

iqg2::GFP-cortexillin I iqgap2(RF)::GFP-cortI, Hyg
R
:pDRH; G418

R
:pDM181 FRAP, FCS 

iqg1::GFP-cortexillin I iqgap1(RF)::GFP-cortI, Hyg
R
:pDRH; G418

R
:pDM181 FRAP 

iqg1::GFP-IQGAP2 iqgap1(RF)::RFP-α-tubulin, Hyg
R
:pDRH; GFP-IQGAP2, G418

R
:pEXP4 FRAP 

iqg1/2::GFP-cortexillin I Iqgap1/2(RF)::GFP-cortI, Hyg
R
:pDRH; G418

R
:pDM181 FRAP, FCS 

racE::GFP-actin racE
24EH6

::RFP-α-tubulin, Hyg
R
:pDRH; GFP-actin, G418

R
:pDM181 FRAP 

racE::GFP-cortexillin I racE
24EH6

::GFP-cortI, Hyg
R
:pDRH; G418

R
:pDM181 FRAP 

racE::GFP-IQGAP2 racE
24EH6

::RFP-α-tubulin, Hyg
R
:pDRH; GFP-IQGAP2, G418

R
:pEXP4 FRAP 



 

Supplemental Experimental Procedures 

 

Cell strains and Culture 

A complete list of the strains used is provided in Supplementary Table S4. Cells were grown in 

Hans’ enriched 1.5X HL-5 media (enriched with 8% FM) containing penicillin and streptomycin at 

220C on polystyrene petri dishes. Wild type strains used were KAx3 [S2], Ax3:Rep orf+ (HS1000) 

[S3] and rescued strains. Mutant cell lines used have been described previously – myoII [2], ctxA, 

ctxB, and ctxA/B [S3, S4], iqg1, iqg2 and iqg1/2 [S4], and racE [S3].  The plasmids for RFP-tubulin, 

GFP-cortexillin-I, GFP-IQGAP2, GFP-actin, mCherry-myosin-II and GFP have been described 

previously [S4-S7].  Cells were transformed with expression plasmids by electroporation using a 

Genepulser-II electroporator (Bio-Rad, Hercules, CA).  Cells were then grown in selection medium 

containing 15 µg/mL G418 or 40 µg/mL hygromycin or both drugs when transforming two plasmids.  

Expression levels were checked by fluorescence imaging or Western blotting.  Cells with 

comparable fluorescent protein expression were used for the experiments. 

 

Compression by Agarose Overlay 

Agarose overlay has been established as a method for applying uniform global mechanical stress, 

and has previously been shown to drive mechanosensitive accumulation of certain proteins at the 

cell cortex [S6].  For compression, thin sheets of 2% agarose in MES starvation buffer (50 mM MES 

pH 6.8, 2 mM MgCl2 and 0.2 mM CaCl2) were prepared according to the protocol described by Fukui 

et al. [8, 9] and modified by Kee et al. [S6].  The cells were plated in imaging chambers for 1 hour.  

The culture medium was aspirated and cells were washed with MES starvation buffer twice to 

reduce the background fluorescence.  The buffer was removed completely and a sheet of agarose 

was carefully placed to cover the cells.  Imaging was started after the cells were completely flattened 

(about 2 minutes).  The slide was replaced every 10 minutes to ensure proper cell health.  

 

Latrunculin-A and Jasplakinolide Treatment 

Latrunculin-A and Jasplakinolide were obtained from Sigma-Aldrich.  All cells were pre-treated with 

0.1% DMSO for 4-6 hours.  For phalloidin and anti-actin staining, the cells were incubated with the 

drugs for 15 minutes.  For live cell imaging, drug stocks were freshly made in MES starvation buffer.  

The cells plated in imaging chambers were washed with MES starvation buffer + 0.1% DMSO, 

followed by the addition of the drug-containing buffer.  Imaging was performed after 10 minute 

incubation, and each slide was imaged for 15 minutes before it was replaced with a new slide. 

 



 

Fluorescence Recovery after Photobleaching (FRAP) 

FRAP experiments were performed using a Zeiss Axiovert 200 inverted microscope with LSM510-

Meta confocal module, with a 63x (NA 1.4) objective. Cells expressing GFP-tagged proteins were 

plated in glass-bottom imaging chambers for an hour.  The culture medium was replaced with MES 

starvation buffer immediately before imaging. A small region of the cell cortex was bleached using a 

488 nm Argon laser, and the fluorescence recovery was recorded until recovery saturated (150 

frames, 45-150 ms/frame depending on the protein).  The size and placement of the bleach region 

was kept relatively constant across measurements. 

 

For each frame, the average intensity of the bleached cortical region, reference (unbleached) region, 

and background was quantified using ImageJ (National Institutes of Health, Bethesda, MD) (Fig. 

S1A-B).  For photobleaching correction, the reference theoretical intensity (RTI) was calculated by 

fitting the background subtracted reference intensity to an exponential decay equation as follows: 

                      (1) 

Where, A, B and C are fitting parameters. 

 

The intensity of the bleached region was background subtracted and normalized to RTI (Fig. S1C). 

The normalized intensity (NI) was obtained by normalizing this to the pre-bleach intensity (average 

of 4 pre-bleach images), and was fitted to a single exponential as follows: 

                         (2) 

Where, m1, m2 are fitting parameters and k is the recovery rate. 

 

The recovery time, , and the immobile fraction, Fi were measured as: 

Recovery time,  =         (3) 

Immobile fraction, Fi = 
    

       
   (4)  

 

We also plotted the derivative of normalized intensity for each protein to confirm that our data fit a 

single-exponential, and did not require more complicated models. 

 

Fluorescence Correlation Spectroscopy (FCS) 

FCS experiments were performed using a Zeiss AxioObserver with 780-Quasar confocal module & 

FCS, with a C-Apochromat 40x (NA 1.2) water objective. For purified proteins and dyes, the imaging 

plane was set 200 μm above the coverslip.  10 repetitions of 5 seconds each were collected and the 



 

average spectrum was used for measuring diffusion times.  For diffusion measurements in cells, the 

imaging plane was set through the middle of the cell.  The acquisition time was reduced to 2 

seconds to avoid complications from long distance cellular and intracellular movement.  The average 

from 2-7 repetitions was used to calculate diffusion times.  Any trace showing a persistent deviation 

from the mean or significant photobleaching was discarded.  The autocorrelation data was then fit to 

a single component, 3D-diffusion model with triplet state dynamics using the following equation: 

              
 

 
    

 

  
       

 

    
        (5) 

Where, 

  = correlation time 

   = diffusion time 

N = number of particles 

  = structural parameter 

         
              

  
 

(   = fraction of particles in triplet state and    = relaxation time for triplet state). 

 

100 nM Rhodamine 6G was used for pinhole alignment and structural parameter calculation (Fig. 

S1F-H).  The measured value of the structural parameter was used for diffusion time calculation of 

other proteins.  All imaging was done in uncoated 35 mm-glass bottom dishes (Coverslip No. 1.5) 

(MatTek Corp., Ashland, MA). 

 

In compressed cells, the cell height is comparable to the z-dimension of the FCS confocal volume.  

Therefore, we also analyzed the FCS data using a 2D-diffusion model and observed no significant 

differences in diffusion times as compared to those calculated using the 3D-diffusion model.   

 

Calculation of Diffusion Coefficients 

Rhodamine 6G was used as a standard for calculating diffusion coefficients.  As the diffusion 

coefficient is inversely proportional to the diffusion time, we used the published value of the diffusion 

coefficient for rhodamine 6G and measured diffusion times for rhodamine 6G and the proteins of 

interest to calculate effective diffusion coefficients (    ). 

      
         

  
    (6) 

Where,   

    = diffusion coefficient for rhodamine 6G (= 426 μm2/s [S1]) 



 

      = measured diffusion time for rhodamine 6G = 33 ± 2 μs 

   = measured diffusion time. 

 

We used purified mCherry to validate our diffusion coefficient calculation.  Our measured diffusion 

coefficient for mCherry (94 μm2/s) matched closely the published value for purified GFP (95 μm2/s 

[S1]) under the same conditions (Supplemental Table S3). 

 

Phalloidin and Anti-actin Staining for F-actin Quantification  

For quantifying the relative amount of F-actin, the cells were fixed and stained with TRITC-phalloidin 

(Sigma Aldrich) or anti-actin monoclonal antibody (Developmental Studies Hybridoma Bank, 

University of Iowa) as described in Luo et al. [10].  Dictyostelium cells were plated on sterile 22x22 

mm glass coverslips in 6-well polystyrene dishes at 70-80% confluency for 1 hour. The media was 

aspirated and replaced with 2 mL drug-containing media for 15 minutes.  The cells were washed 

with 1X PBS, and immediately fixed on ice using acetone at -200C for 3 minutes. The coverslips 

were transferred to a new 6-well dish and washed once with 1X PBS, followed by blocking in 

blocking buffer (1X PBS + 0.05% Triton X-100 + 0.5% BSA) for 30 min. The cells were stained with 

0.16 µM TRITC-phalloidin for 1 hour or with anti-actin antibody overnight followed by 2 hour 

incubation with TRITC goat-anti-mouse secondary. All coverslips were washed 4 times with 1X PBT 

(1X PBS + 0.05% Triton X-100) for 5 minutes each, and then once with 1X PBS. The coverslips 

were then mounted on glass slides using 10 µL mounting buffer (90% glycerol in 1X PBS). 

 

To quantify the relative amount of F-actin, all coverslips were imaged under identical conditions on a 

motorized Olympus IX71 microscope using a 40x (NA 1.3) objective with a 1.6x optovar (Olympus, 

Center Valley, PA). The integrated fluorescence intensity of the cells was quantified using ImageJ. 

At least 100 cells from more than 10 different fields were quantified. The intensity was normalized to 

the average fluorescence intensity of the untreated control for a given experiment.  The data shown 

represents three biological replicates. 

 

Cortical Tension Measurement Using Micropipette Aspiration 

The experimental set-up has been previously described in detail in Effler et al. (2006) [S5].  0.01-0.6 

nN/µm2 pressures were applied to a smooth region of the cell cortex through a ~5 µm internal 

diameter glass micropipette (Rp = 2.3-3 μm).  A low pressure was first applied to form a pressure 

seal. The cell protrusion was allowed to stabilize for 30 seconds before imaging. Subsequently, the 

pressure was gradually increased and imaging was resumed after the protrusion stabilized.  This 



 

was continued until the protrusion length became large (Lp > Rp) or the cell blebbed.  At each 

pressure, the protrusion length from five consecutive frames was averaged.  The critical pressure 

(ΔPcrit) was identified as the pressure where Lp = Rp, and the cortical tension (Teff) was calculated 

using the following equation: 

 

                
 

  
 

 

  
    (7) 
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