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Abstract

Aquaporin-5 (AQP5) is a water-specific channel located on the apical surface of airway epithelial cells. In addition to
regulating transcellular water permeability, AQP5 can regulate paracellular permeability, though the mechanisms by which
this occurs have not been determined. Microtubules also regulate paracellular permeability. Here, we report that AQP5
promotes microtubule assembly and helps maintain the assembled microtubule steady state levels with slower turnover
dynamics in cells. Specifically, reduced levels of AQP5 correlated with lower levels of assembled microtubules and decreased
paracellular permeability. In contrast, overexpression of AQP5 increased assembly of microtubules, with evidence of
increased MT stability, and promoted the formation of long straight microtubules in the apical domain of the epithelial cells.
These findings indicate that AQP5-mediated regulation of microtubule dynamics modulates airway epithelial barrier
properties and epithelial function.

Citation: Sidhaye VK, Chau E, Srivastava V, Sirimalle S, Balabhadrapatruni C, et al. (2012) A Novel Role for Aquaporin-5 in Enhancing Microtubule Organization and
Stability. PLoS ONE 7(6): e38717. doi:10.1371/journal.pone.0038717

Editor: Michael Butterworth, University of Pittsburgh, School of Medicine, United States of America

Received March 20, 2012; Accepted May 11, 2012; Published June 8, 2012

Copyright: � 2012 Sidhaye et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the FAMRI (Flight Attendants Medical Research Institute) (FAMRI Young Investigator Award) Young Investigator Award
and K08HL085763 (VKS), the Johns Hopkins Bayview Scholars Program (LSK), and an NIH grant GM66817 (DNR). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: vsidhay1@jhmi.edu

Introduction

Aquaporin-5 (AQP5) is a water-specific channel located on the

apical membrane of epithelial cells in several sites in mammals,

including corneal and pancreatic epithelium, secretory cells in

salivary and lacrimal glands, and airway submucosal glands,

bronchial epithelium and type I pneumocytes of the respiratory

tract. The primary focus of studies on AQP5 function has been

related to its water selectivity and its role in conveying a high

degree of membrane water permeability [1,2,3,4], although other

roles have also been suggested, including regulation of paracellular

permeability [5,6], cell proliferation [7,8], or cell migration

[8,9,10]. While regulation of local water flux could contribute to

these processes, the specific mechanisms by which these processes

are mediated are not defined.

Airway epithelial cells can dynamically regulate paracellular

permeability in response to both physiologic and pathologic stimuli

[6,11]. AQP5 can regulate paracellular permeability in primary

airway epithelial cells [6]. Regulation of paracellular permeability

has two main functions. First, it serves to gate the passage of ions

and macromolecules through the paracellular pathway, and

restricts access of these molecules to subepithelial tissues. In

addition, it separates and regulates access between the apical and

basolateral membrane domains of polarized epithelia. [12,13].

Dynamic changes in airway epithelial paracellular permeability

allow for receptor-ligand access across the airway epithelium, and

thereby regulate cell signaling [11]. In airway epithelial cells,

altered AQP5 abundance is associated with changes in actin

organization and in desmoplakin localization, which could

contribute to the changes in paracellular permeability. [6]. Others

have shown a similar change in paracellular permeability

regulated by AQP5 in salivary glands, however in that system it

was associated with alterations in claudin-7, claudin-3, and

occludin [5]. In both studies, mechanisms by which AQP5 altered

these proteins were not further elucidated. In polarized epithelium,

adhesion between adjacent cells is mediated by intercellular

junctions, namely, tight junctions, adherens junctions, and

desmosomes [14]. These structures are composed of adhesive

and scaffolding proteins that are anchored to different cytoskeletal

structures such as actin filaments, intermediate filaments, and

microtubules (MTs). In response to many stimuli, changes in

epithelial permeability result from cytoskeletal rearrangement that

modifies these intercellular junctions [15]. However, the effects of

cytoskeletal rearrangements on barrier function may be cell type

specific. Airway epithelial cells have decreases in paracellular

permeability when exposed to MT depolymerizing agents such as

nocodazole [16]. It has been shown that MT dynamics regulate

actin organization and adherens junctions in epithelial cells

[16,17], thereby contributing to changes in paracellular perme-

ability. In direct contrast, microtubule disassembly has been
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associated with increases in paracellular permeability in the

endothelium [18,19,20]. Mechanisms mediating these differing

responses are unclear, but there is precedence for differential

epithelial and endothelial barrier responses to stimuli such as

thrombin [21].

Using both in vivo and in vitro models, we have demonstrated that

low levels of shear stress, as sensed by the airway epithelium during

quiet, or tidal volume breathing, decreased paracellular perme-

ability. Shear stress decreased AQP5 and paracellular permeabil-

ity, while overexpression of AQP5 increased paracellular perme-

ability [6]. Lorenowicz and colleagues described that microtubule

depolymerization results in decreased paracellular permeability, so

we sought to determine if shear-induced changes in permeability

were in part mediated microtubule (MT) dynamics [16].

In this study, we identify a novel role for AQP5 in directly

regulating MT polymerization by increasing MT stability, an

effect that appears to be specific to AQP5 as AQP1 does not show

these properties. The AQP5 carboxyl-terminus is sufficient to

promote microtubule assembly, suggesting that the effect is not

dependent on water transport properties.

Results

Shear stress increases microtubule depolymerization and
decreases paracellular permeability in NHBE cells

To identify a role for MT levels in the shear-induced decreased

paracellular permeability, we used well established biochemical

techniques whereby detergent soluble, disassembled tubulin is

extracted from permeabilized cells [22,23,24,25]. Assembled MT

fractions were then quantified by immunoblotting, and equal

loading and transfer was confirmed with Ponceau S staining of the

membrane (not shown). We measured soluble and insoluble

fractions of tubulin from NHBE cells after exposure to either static

or shear conditions (Fig. 1A, B). Shear stress increased the soluble

tubulin fraction as compared to static cells while total tubulin levels

remained unchanged (Fig. 1A). Others have suggested that a

reduction in assembled MTs leads to decreased paracellular

permeability in airway epithelial cells, as measured by transepi-

thelial resistance [16]. Following exposure of NHBE cells to

nocodazole (a MT depolymerizing agent) for 1 h, FITC-dextran

permeability decreased, similar to that seen after exposure to shear

stress (Fig. 1C). After treatment of NHBE cells with nocodazole,

shear stress produced no further decrease in paracellular

permeability.

AQP5 alters microtubule stability
We identified that shear-mediated reduction in paracellular

permeability resulted from decreased AQP5 abundance, while

overexpression of AQP5 in 16HBE cells (which do not express

endogenous AQP5) increases paracellular permeability [6]. To

determine whether changes in AQP5 abundance alter assembled

MT steady state levels, we transduced either control adenovirus or

adeno-AQP5 into 16HBE cells, and assessed soluble and insoluble

tubulin fractions. The efficiency of adenoviral transduction of

16HBE cells was almost 100%, as anticipated [6]. Transduction of

adeno-AQP5 decreased the soluble tubulin fraction, shown by

densitometry analysis (Fig. 2A). In order to induce increased

AQP5, we treated NHBE cells with hypertonic media [26].

Hypertonic exposure lead to an increase in total AQP5 as well as

an increase in the insoluble fraction of tubulin (Fig. 2B) To confirm

that decreased AQP5 result in decreased assembled MT levels, we

knocked down AQP5 in NHBE cells using a lentiviral shRNA

transduction. We achieved 80–90% knockdown (Fig. 2B) and

significantly increased the soluble tubulin fraction (Fig. 2C). We

visualized the impact of AQP5 on MT stability by expressing

AQP5 in 16HBE cells using adenoviruses. AQP5 expression

increased levels of stable, assembled MTs, which were visualized

by immunofluorescence after cell extraction (Fig. 2D). To further

assess the effects of AQP5 on tubulin stability, we exposed adeno-

control or adeno-AQP5-transduced 16HBE cells to nocodazole

Figure 1. Shear stress and MT depolymerization are associated
with decreased airway epithelial paracellular permeability and
shear stress results in increased MT depolymerization. A.
Exposure to shear stress caused an increase in depolymerized, or
soluble tubulin as assessed by western blotting, without a change in
total tubulin. B. From densitometry analysis, the level of soluble tubulin
was increased significantly in cells exposed to shear stress as compared
to static cells. (n = 6; * p,0.025 with ANOVA one-way) C. NHBE cells
exposed to nocodazole (20 mM) had a decrease in FITC-dextran
permeability, similar to that seen after exposure to shear stress. After
treatment with nocodazole, exposure to shear stress led to no further
decrease in paracellular permeability (n = 5; * p,0.025 with ANOVA
one-way)
doi:10.1371/journal.pone.0038717.g001

AQP5 Stabilizes Microtubules
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Figure 2. Molecular manipulation of AQP5 altered the MT soluble fraction. A. Transduction of adeno-AQP5 in 16HBE cells led to a
significant decrease in soluble tubulin fraction. A representative immunoblot is shown. A bar graph shows the quantification by densitometry (n = 4; *
p,0.025 with ANOVA one-way). B. In NHBE cells, treatment with hypertonic media led to an increase in the insoluble MT fraction, compared to
isotonic control. Hypertonic media caused an increase in total AQP5. (n = 2) C. In NHBE cells, knockdown of AQP5 by adenoviral transduction led to an
increase in the soluble MT fraction, compared to a scrambled control. Representative immunoblots and bar graphs are shown. (n = 4; * p,0.025 with
ANOVA one-way). D. Immunofluorescence of tubulin was performed on HBE cells transduced with either control adenovirus or adeno-AQP5 pre- or
post- soluble tubulin extraction without a change in intensity settings. In cells with transduced with adeno-AQP5, there is significantly more
microtubules visualized post-extraction. Quantitative analysis of these images were performed by obtaining the whole field intensity of the maximum
projection intensity of the fields (n = 10, *p,0.01) E. Overexpression of AQP5 caused endogenous MTs to be more resistant to nocodazole treatment.
16HBE cells were transduced with either control adenovirus or adeno-AQP5 and MT expression was compared before and after nocodazole treatment
(10 mM). No clear change in tubulin polymerization in adeno- control or adeno-AQP5 expressing cells was observed. After 10 min of treatment with
nocodazole, a considerable decrease in polymerized tubulin was observed in adeno-control expressing cells. However, the adeno-AQP5 infected cells
maintained a substantial level of polymerized tubulin. Scale bar, 10 mm; applies to each frame. (n = 10, per condition. Representative figure shown).
doi:10.1371/journal.pone.0038717.g002

AQP5 Stabilizes Microtubules
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before visualizing the MTs by immunofluorescence. After 10 min

of nocodazole treatment, the assembled MTs decreased in control

cells. However, adeno-AQP5 cells maintained more assembled

MT arrays after nocodazole treatment compared to adeno-control

cells (Fig. 2E).

Increased tubulin acetylation is associated with increased

tubulin stability [27,28,29,30]. To further confirm that AQP5

expression increased tubulin stability, we assessed tubulin acety-

lation in response to AQP5 manipulation. NHBE cells were

exposed to static and shear conditions. Physiologic shear stress,

which decreased AQP5 abundance, also caused a decrease in

acetylated tubulin (Fig. 3A). AQP5 knockdown in NHBE cells,

similarly resulted in decreased tubulin acetylation (Fig. 3B).

Finally, overexpression of AQP5 in 16HBE cells resulted in

increased tubulin acetylation (Fig. 3C).

AQP5 directly interacts with tubulin to promote
assembly and stabilize MTs

Our cell culture studies suggested that overexpression of AQP5

stabilizes MTs. To determine if AQP5 mediated MT stabilization

by direct interactions between AQP5 and tubulin, we examined

the effect of purified human AQP5 on tubulin polymerization in

vitro. We first used bulk co-sedimentation assays where polymer-

ized tubulin sediments into the pellet fraction. Without polymer-

ized tubulin, AQP5 remained in the soluble (supernatant) fraction.

However, upon addition of MTs, AQP5 separated into the pellet

fraction. Bovine serum albumin (BSA; negative control) remained

primarily in the supernatant fraction with and without MTs

(Fig. 4A). These results indicate that purified AQP5 can associate

with MTs. We note that in the pellet fractions, we also observed a

protein species in the AQP5+MT samples which by westerns is

consistent with being an AQP5 dimer, suggesting that AQP5

dimers may associate with MTs.

Using fluorescence microscopy, we tested if the addition of

purified AQP5 could promote microtubule stability (Fig. 4B). At

37uC, we observed assembled MTs under all conditions except

with nocodazole. However, upon shift to 4uC where MTs

normally fail to assemble due to their cold sensitivity, AQP5, like

taxol, maintained assembled MTs. We found that the carboxyl-

terminal domain of AQP5 (final 40 a.a.; AQP5-CT) was sufficient

to maintain MT stability.

Addition of either AQP5 or the AQP5-CT to soluble tubulin

promoted tubulin polymerization (Fig. 4C). In contrast, the

addition of AQP1 neither increased polymerization at 37uC
(Fig. 3C) nor stabilized MTs at 4uC (Fig. 4B). Nocodazole was used

as a control in both assays, demonstrating that the fluorescence

signal reflected MT assembly (Fig. 4B, C). The rate and level of

MT assembly increased with increasing AQP5 concentration

(0.25, 0.5 and 1 mM) (Fig. 4D). The available concentrations of

purified AQP5 limited our ability to evaluate higher concentra-

tions and ratios. Analysis of the fluorescence assembly assay data

revealed that the inverse time to 25% assembly, which is largely

dominated by nucleation, increased with increasing AQP5

concentrations with a slope of 0.35 mM21 min21 (Fig. 4E),

suggesting that purified AQP5 alters MT nucleation in the in vitro

assay. Increasing AQP5 concentrations had a stronger effect on

the MT growth (elongation) phase though this regime did not

readily fit a single exponential. Instead, the rapid phase was better

described as linear with a slope of 13 units?mM21 min21 (Fig. 4F).

Thus, AQP5 has a strong effect on the growth and stability of MTs

with a more subtle, but detectable, effect on MT nucleation.

AQP5 promotes microtubule stability in cells
The steady state levels of MT assembly are established by a

balance between assembly (nucleation and elongation) and

disassembly. Our in vitro observations (above) indicate that AQP5

could either promote assembly and/or stabilize MTs, both of

which would increase the insoluble fraction of tubulin (Fig. 1, 2, 3,

4). We transduced a human epithelial cell line which does not

express AQP5 (16HBE cells), with either adeno-AQP5 or control

adenovirus, and using fluorescence recovery after photobleaching

(FRAP) we observed that cells expressing AQP5 had reduced

fluorescence recovery, including increased half-life and immobile

fraction (Fig. 5A–C). These data then indicate that AQP5

promotes MT stability in intact cells.

To determine if AQP5-CT could similarly stabilize MTs in

cells, we transfected purified AQP5-CT protein into HEK cells.

Direct transfection of purified protein was necessary as recombi-

nant expression from an episomal plasmid did not yield peptide

expression, presumably due to immediate degradation. After

introduction of AQP5-CT, the tubulin insoluble fraction in-

creased. This stabilization was specific to AQP5-CT as the shorter

20 a.a. tail region of AQP5 and AQP1 failed to increase the

insoluble tubulin fraction (Fig. 5D). This indicates that a critical

region in AQP5-CT lies in the first half of the final 40 amino acids

Figure 3. Changes in AQP5 are associated with altered
acetylated tubulin (n = 6, per condition, representative blots
shown). A. Shear stress, which causes decreased AQP5, led to
decreased acetylated tubulin with no change in total tubulin. B. In
NHBE cells, AQP5 knockdown resulted in decreased acetylated tubulin,
with no change in total tubulin. C. Overexpression of AQP5 resulted in
increased acetylated tubulin in 16HBE cells.
doi:10.1371/journal.pone.0038717.g003

AQP5 Stabilizes Microtubules
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Figure 4. AQP5 purified protein both associated with MTs and altered MT polymerization (all experiments have a minimum of 4
replicates). A. Using a spin down co-sedimentation assay, polymerized tubulin was primarily in the pellet. AQP5, in the absence of MTs remains in
the supernatant, however, after the addition of MTs it was primarily in the pellet. In contrast, as a negative control, BSA was primarily in the
supernatant and addition of MTs does not alter its localization. B. Using fluorescence microscopy, changes in MT assembly were visibly apparent. At
37 C, MTs assembled to different extents under all conditions, except in the presence of nocodazole. Upon shifting the temperature to 4 C, MTs
disassembled in the tubulin-alone control and in the presence of AQP1. However, MTs remained assembled in the presence of AQP5, taxol and AQP5-
CT. (scale bar 100 mM) C. In a fluorescence-based polymerization assay, AQP5 (1 mM) and AQP5-CT, like taxol, increased MT polymerization whereas
AQP1 (1 mM) failed to support MT assembly as compared to tubulin alone (2 mM). Nocodazole also inhibited assembly. Taxol (30 mM) and nocodazole
(30 mM) were added as positive and negative controls, respectively. D. Addition of increasing concentrations of AQP5 increased the rate and extent of
MT assembly in the fluorescence assay. E. Analysis of the fluorescence assembly assay data revealed that the inverse time to 25% assembly, which is
largely dominated by nucleation, increased with increasing AQP5 concentration. The slope was 0.35 mM21 min21. F. Analysis of the rapid, linear
growth phase showed an increasing rate of polymer assembly as a function of AQP5 concentration. The slope was 13 units mM21 min21.
doi:10.1371/journal.pone.0038717.g004

AQP5 Stabilizes Microtubules
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of the protein. To confirm the transfection efficiency for these

experiments, we followed b-galactosidase activity, confirming 90–

100% transfection efficiency (Fig. 5E). In order to confirm that this

stabilization is due to direct interation between AQP5 and MTs,

we performed co-immunoprecipitation in NHBE cells. Immuno-

precipitation of b-tubulin resulted in AQP5 pull-down. Similarly,

immunoprecipitation of AQP5 resulted in pull-down of b-tubulin

(Fig. 5F).

Lastly, to better observe the effect of AQP5 on MTs in cells, we

performed total internal reflection fluorescence (TIRF) microscopy

on 16HBE cells 6AQP5. TIRF imaging of the apical surface

revealed a distinctive difference in the MT organization 6 AQP5

(Fig. 6A). Without AQP5, the MTs were organized into a

meshwork, where little overall pattern was visible. In contrast, in

cells expressing AQP5, the MTs were much more highly

organized, running parallel for greater distances, and had an

overall greater end to end length visible in the TIRF field. The

cells were grouped into one or the other category based on image

appearance and the frequency of cells that had either phenotype

was analyzed (Fig. 6B). In addition, cells expressing AQP5 had

50% longer apical MTs than control cells (Fig. 6C). In contrast,

TIRF imaging of the basolateral membrane did not identify

differences in microtubule length or structure (Fig. 6D).

Figure 5. Overexpression of AQP5 led to delayed fluorescence recovery and increased MT stability. In primary human airway epithelial
cells, AQP5 directly binds to tubulin. A. Using FRAP analysis of transduced 16HBE cells, which do not naturally express AQP5, we found that AQP5
delayed fluorescence recovery of GFP-a-tubulin after photobleaching. B. The measured recovery half-life (t1/2) of GFP-a-tubulin increased in cells
expressing AQP5 compared to control cells (*, Student’s t-Test (ST): p = 0.01). C. AQP5-expressing cells also had a significantly increased immobile
fraction (*, ST: p,0.01). D. AQP5-CT is sufficient to increase the insoluble fraction of tubulin in HEK cells. Control b-galactosidase, full-length AQP1, the
final 20 amino acids of AQP5 or the entire AQP5-CT (carboxyl-terminal 40 amino acids) were transfected into HEK cells using the protein transfection
reagent Chariot (Activemotif) and insoluble MT fractions were collected. Full-length AQP5 data was reproduced from Fig. 2 and shown here for direct
comparison. Detection of the soluble fraction was minimal in these cells. E. b-galactosidase-staining in control cells confirmed that the transfection
efficiency was 90–100%. E. NHBE cells, with immunoprecipitation of b-tubulin, there is pull-down of AQP5, and similarly with immunoprecipitation of
AQP5, there is pull-down of b-tubulin. An IgG immunoprecipitation was performed as a control (n = 4, per condition).
doi:10.1371/journal.pone.0038717.g005
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Figure 6. Total internal reflection fluorescence (TIRF) imaging showed that AQP5 altered MT structure at apical surfaces. A. Cells
transduced with control adenoviruses (adeno-control) show a MT meshwork at their apical surfaces. Cells expressing AQP5 (adeno-AQP5) had longer,
more aligned MTs at their apical surfaces. Scale bar, 10 mm. B. Cells expressing AQP5 were significantly more likely to have long and straight apical
MTs. MT phenotypes were grouped into two categories, phenotype 1 (panel A, adeno control (n = 22 cells) image is an example) and phenotype 2
(panel A, adeno-AQP5 (n = 20 cells) image is an example). Cells within each treatment group were sorted based on image appearance. The frequency
of cells that had either phenotype for each condition is plotted on the bar graphs. The two groups were significantly different (Comparison of

AQP5 Stabilizes Microtubules
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Discussion

Since their discovery in the early 1990’s, the primary focus of

aquaporin research has been on the transcellular transport of

water and other small solutes across the cell membrane. Novel

roles for aquaporins besides bulk transport of water have been

identified. Saadoun et al [31] first proposed roles for AQP1 in cell

migration and angiogenesis. Since then, other aquaporins have

been identified to have similar roles in cell migration and

proliferation [32,33,34,35]. However, even these novel roles are

thought to occur via local water flux driven by small osmotic

changes due to actin polymerization-depolymerization and trans-

membrane ion fluxes [32]. Others have proposed that AQP0

could play a role in modulating cell-cell contacts, potentially via

interaction with connexins [36,37,38,39,40]. While AQP4 has also

been postulated to participate in mediating cell-cell contacts [41],

this has been met with some controversy [42]. To our knowledge,

in this report we provide the first description of a role for an

aquaporin in directly associating with and modulating the

cytoskeleton.

Twelve mammalian homologues have been identified, with

distinct cellular and subcellular distributions [2]. It has been

hypothesized that different homologues are required to achieve

distinct regulation of water homeostasis in different cells and

organs [2]. In addition, localization and regulation of each

aquaporin is distinct, and therefore allows for further fine-tuning

of water regulation in cells. However, our study demonstrates an

additional rationale for multiple aquaporins. In addition to its role

in water transport, AQP5 directly binds to MTs and increases

their assembly. This function is at least relatively specific, since

AQP1 did not alter MT dynamics. Our data indicates that AQP5

increases MT assembly primarily by stabilizing MTs, but in

addition, our cell-free assay indicates that AQP5 also can promote

MT nucleation. It is not known if this latter mechanism occurs in

vivo.

Our data shows that the carboxyl-terminus– the longest

intracellular portion of the protein– is sufficient to mediate this

increase in MT assembly. The carboxyl-terminus is distinct from

the conserved segment of the aquaporins, the Asn-Pro-Ala (NPA)

motif, that are critical in regulating water transport through the

pore and through the membrane [43]. When the carboxyl-

terminus of AQP5 and AQP1 are aligned, only 11/35 (32%)

amino acids are identical, so it is perhaps not surprising that that

the two proteins do not function similarly when it comes to MT

polymerization.

The fact that the carboxyl-terminus is sufficient to allow for MT

assembly raises other interesting considerations. While aquaporins

are present in the membrane as tetramers, the water channel

forms through the center of the monomer, rather than the center

of the tetramer, as is often observed in ion channels [44].

Structurally, based on analysis of AQP1, each monomer is

positioned such that the outside face of the tetramer is

hydrophobic, and the center of the tetramer is hydrophilic [43].

Further, in AQP5, a lipid occludes the putative central pore [44].

Given the tetrameric structure, one might speculate whether this

organization allows for juxtaposition of four AQP5-CT domains,

further enhancing AQP5 effects on MT stabilization.

Previous work from our lab and others has shown that AQP5

modulates paracellular permeability in epithelial cells [5,6]. This is

associated with changes in proteins mediating cell-cell contacts.

However, the mechanisms by which changes in an apically

expressed water channel alter proteins in the lateral membrane are

not clear. Our study provides insight into one potential

mechanism, by showing that AQP5 can directly modulate MT

stability. Further molecular definition of how altered MT assembly

affects adherens junction and desmosomal proteins awaits

elucidation and these responses in cell-cell contacts maybe cell-

type specific. Other microtubule associated proteins such as MAP4

[45] are present in airway epithelial cells, suggesting that MAP4,

along with AQP5, could modulate airway epithelial microtubule

dynamics. However, AQP5 is tightly regulated in lung epithelial

cells, and dynamically responds to several physiologic and

pathologic stimuli including TNFa [46], cAMP [47,48,49],

osmotic stress [26,50,51,52,53,54], LPS [55,56] and shear stress

[6]. While it has been hypothesized that tight regulation of AQP5

may be needed to control transmembrane water flux, however,

coordination of MT dynamics with consequential changes in

paracellular permeability is an alternate explanation for this level

of regulation. AQP5 can be internalized in response to certain

stimuli such as cAMP in as little as two minutes [48] and be

degraded in response to osmotic stress in thirty minutes [50].

Clearly, AQP5 is subjected to multiple levels of regulation, leading

to changes in paracellular permeability on different time-scales in

response to different types of luminal stimuli. While our study

indicates that AQP5 can directly mediate changes in microtubule

dynamics, we do not rule out the possibility of subsequent indirect

effects on microtubule polymerization also leading to the changes

in MT stability. To our knowledge, this is the first demonstration

that an aquaporin can directly mediate changes in cytoskeletal

organization via a mechanism independent of water transport,

providing yet another novel role for an aquaporin.

Materials and Methods

Materials
Unless specified, all reagents were purchased from Sigma.

Cell culture, stimulation and immunoblotting
Primary human bronchial epithelial cells (NHBE) (Lonza) were

grown on collagen-coated inserts (Falcon) at 37uC with 5% CO2 in

specified media and maintained at an air-liquid interface for 6–9

weeks before study; transepithelial resistance (TEER) was always

.400 ohms when cells were used. Cells were harvested and lysed

in RIPA buffer [6]. Chemiluminescence reagents and horseradish

peroxidase-coupled secondary antibodies were from Amersham

(Arlington Heights, IL). Bicinchoninic acid (BCA) protein assay kit

was from Pierce (Rockford, IL). Antibodies to the carboxyl-

terminus of human AQP5 were generated by our laboratory [57].

When equivalent loading could not be performed by a protein

loading control, Ponceau S staining of the membrane was

performed.

Immortalized human bronchial epithelial cells [6,58,59,60]

(16HBE, gift of Gary Cutting, Johns Hopkins but from ATCC)

were cultured on inserts and infected with either control, GFP- or

Proportions (CP): z = 4.6; p,0.0001). C. Cells expressing AQP5 had longer apical MTs than control cells had. Images show examples of individual traces
MTs. Bar graph shows the average length per condition (ANOVA one-way: p = 0.001). Using live TIRF, microtubules visualized on the apical surface
were measured using ImageJ. 8–10 microtubules were measured per cell across 20–22 cells per treatment group. Total MTs analyzed is shown on the
bar graph. D. Analysis of the basolateral surface showed no significant difference in MT length per condition. Bar graph shows the average length per
condition with total number of MTs sampled depicted (8–10 cells per treatment group).
doi:10.1371/journal.pone.0038717.g006

AQP5 Stabilizes Microtubules
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AQP5-expressing adenovirus (University of Iowa) as described

previously [6]. HEK cells (ATCC) were cultured for specified

experiments using MEM media with or without 15% serum.

Protein concentration determination
Protein concentrations were estimated by the Bradford assay

using BSA as a standard.

Transfection
HBE cells were grown in chamber slides to 50 to 60%

confluence and transiently transfected (1 mg/well) with HA-AQP5

[48] or control plasmid using FuGENE 6 (1.5 ml; Roche)

according to the manufacturer’s recommendations. In other

experiments cells were transfected with GFP-tubulin (gift of Geri

Kreitzer, Cornell University) as described above. In Chariot

protein transduction studies, HEK cells were used cultured in 6-

well dishes, with tranfection at 90–100% confluence. In specified

studies cells were cultured on inserts and infected with either

control-, GFP- or AQP5-expressing adenovirus. In specified

studies NHBE cells were transduced with adenovirus expressing

either shRNA directed against AQP5 or a non-targeting control.

109 infectious particles/ml were used at the lowest concentration

required for protein knockdown. Apical media was removed and

basal media changed, and cells were used 4–5 days later.

Confocal imaging
Confocal laser microscopy (Leica SP5) was performed on cells

grown on inserts using antibodies against tubulin (Sigma) with

appropriate secondary antibodies (Alexa 488 or Alexa 555;

Molecular Probes). For specified experiments to detect microtu-

bules, cells were fixed with 220uC methanol. In images obtained

pre- or post- soluble tubulin extraction, cells were either fixed

directly with 220uC methanol or after soluble tubulin extraction

was performed, as described below. Images were obtained without

adjusting gain between conditions, and for semi-quantitative

assessment of intensity as demonstrated, the maximum projection

intensity was obtained using Leica software over the entire field for

the various samples.

Shear stress
Fluid flow to generate shear levels of 1.5–3 dynes/cm2 was

applied as described [6]. Fluid flow rates of 0.5–1 ml/min provide

a shear stress consistent with the magnitude experienced by airway

epithelial cells in vivo by airflow. Calculations for this are described

[6].

Permeability assay
Paracellular permeability of cultured cells was assessed by

measuring the passage of 4 kD FITC-dextran across the mono-

layer as described [6].

Expression and purification of AQP5
Human AQP5 was purified as described [48]. Briefly, AQP5

was purified from protease-deficient (pep4D) Saccharomyces cerevisiae

expressing pYES2 (Invitrogen) containing human AQP5. Mem-

branes were solubilized in 200 ml of buffer A with EDTA-free

protease inhibitors (Roche Biochemicals)), loaded on a Ni-NTA

agarose column (nickel-charged nitrilotriacetic acid, Qiagen), and

eluted with 800 mM imidazole. This His-tag was cleaved with

thrombin prior to testing.

Microtubule–AQP5 co-sedimentation
Purified biotinylated tubulin was obtained from Cytoskeleton

(Denver, CO), and in vitro sedimentation assays were performed

per the manufacturer’s instructions. AQP5 or an equal volume of

AQP5 buffer as described above was added as indicated. MTs

were pelleted at 100,000 g in a Beckman Ti-100 at 25uC. The

resulting soluble and pellet proteins were separated by SDS-PAGE

and silver staining performed to detect proteins.

Microtubule polymerization assay
A tubulin polymerization kit was obtained from Cytoskeleton

(Denver, CO) and used according to manufacturer’s recommen-

dations. Conditions were chosen to minimize polymerization of

tubulin alone in order to detect an enhancer of tubulin

polymerization. Therefore, no glycerol was added to the buffer.

Polymerization is followed by fluorescence enhancement due to

the incorporation of a fluorescent reporter into microtubules as

polymerization occurs. The assay utilized 2 mM purified tubulin,

which generates a polymerization curve, using absorbance

readings at 340 nm to follow microtubule formation.

Microtubule extraction protocol
Soluble and insoluble MT fractions were extracted as described

[24]. Briefly, cells were rinsed with PBS, then 100 ml of PEM

buffer containing 0.5% Triton X-100 and 25% glycerol was added

for 45 seconds at 37uC to collect tubulin monomers (soluble

tubulin). 150 ml of 26 RIPA buffer with a protease inhibitor

cocktail was then added. Cell ghosts (polymerized tubulin) were

lysed with 300 ml of 16 RIPA buffer and protease inhibitors.

Samples were compared using immunoblotting as described

above. Equivalent amounts of total protein as measured by BCA

protein assay were loaded on the gels.

Co-immunoprecipitation
The immunoprecipitation was performed as previously de-

scribed [54]. After pre-clearing the samples with IgG and Protein

A/G beads (Sigma), samples were incubated with an antibody

against the protein of interest. The samples were analyzed by

immunoblotting.

Fluorescence Recovery after Photobleaching
16HBE cells were transfected with mCherry-tubulin as

described above, and transduced with either adeno-AQP5, or

adeno-control plasmid. Regions of interest (ROIs) located near the

membrane within individual cells were photobleached and

monitored for subsequent fluorescence recovery. The FRAP

experiments were performed using a Nikon A1R Confocal

Microscope equipped with the Perfect Focus module, an Akolab

Microscope Stage Incubator, and a 606 oil-immersion objective.

ROIs are defined (4.5 mm diameter circles) and two pre-bleaching

frames were taken at 1.8% laser power for 3.9 s. Bleaching was

achieved using 100% laser power at 561 nm for 15 frames for

7.6 s. 50 frames of post-bleach imaging were collected at 1.8%

laser power for 1.37 minutes. The FRAP series was measured by

using the offline version of NIS Element AR 3.10. The data

measured are intensity vs. time for the ROIs. To determine

recovery half-like (t K), we determined the k constant using the

equations: I = a*(12exp(-kt))+c, where I is the measured intensity,

using a best-fit analysis for k, a, and c. Then t K per condition was

determined using ln (0.5/-k). The immobile fraction was

calculated by the following equation: Immobile fraction = (12f)/

(12g), where f = plateau level after recovery and g = level after

initial photobleaching. Averages were obtained using 6–8 samples
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per condition. We corrected for photobleaching during the

recovery phase by selecting a distinct ROI within the cells. In

addition, background correction was performed by comparing to

an ROI outside the cell.

Total Internal Reflection Fluorescence
To assess the microtubule dynamics at the apical surface, TIRF

movies were collected with a 2 s intervals using a 606 objective

and 1.66 optovar. MDCK cells stably expressing GFP-tubulin

were cultured on #1.5 8 mm round cover slips (Electron

Microscopy Sciences 72296-08) for 48 hours before imaging,

along with AQP5 or null adenovirus. Prior to imaging, the cover

slips were reversed apically onto glass-bottom culture dishes

(MatTek P35G-1.5-10-C). The inverted coverslips were also gently

compressed using a thin sheet of agarose to allow for better TIRF

imaging.

Chariot protein transfection
Peptide introduction into cells was performed according to

manufacturer’s protocol (Activemotif). Briefly, a chariot-peptide

complex was formed by incubation for 30 min. after which it was

added to serum free cell media and the plate was gently rocked to

ensure even delivery. Cells were incubated for 1.5–2 hrs, after

which soluble and insoluble MT fraction were collected as

described.

Statistics
Statistical analysis was performed using STATA 9 (Stata

Corporation). One-way ANOVA, Student’s t-test (ST) and

Comparison of Proportions (CP) were used as appropriate. The

specific test is indicated along with p-values.
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