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Summary

Background: Mechanosensing governs many processes from
molecular to organismal levels, including during cytokinesis
where it ensures successful and symmetrical cell division.
Although many proteins are now known to be force sensitive,
myosin motors with their ATPase activity and force-sensitive
mechanical steps are well poised to facilitate cellular mecha-
nosensing. For a myosin motor to experience tension, the actin
filament must also be anchored.
Results: Here, we find a cooperative relationship between
myosin II and the actin crosslinker cortexillin I where both
proteins are essential for cellular mechanosensory responses.
Although many functions of cortexillin I and myosin II are
dispensable for cytokinesis, all are required for full mechano-
sensing. Our analysis demonstrates that this mechanosensor
has three critical elements: the myosin motor where the lever
arm acts as a force amplifier, a force-sensitive bipolar thick-
filament assembly, and a long-lived actin crosslinker, which
anchors the actin filament so that the motor may experience
tension. We also demonstrate that a Rac small GTPase inhibits
this mechanosensory module during interphase, allowing the
module to be primarily active during cytokinesis.
Conclusions: Overall, myosin II and cortexillin I define
a cellular-scale mechanosensor that controls cell shape during
cytokinesis. This system is exquisitely tuned through the enzy-
matic properties of the myosin motor, its lever arm length, and
bipolar thick-filament assembly dynamics. The system also
requires cortexillin I to stably anchor the actin filament so
that the myosin motor can experience tension. Through this
cross-talk, myosin II and cortexillin I define a cellular-scale
mechanosensor that monitors and corrects shape defects,
ensuring symmetrical cell division.

Introduction

Similar to chemical cues that direct cell behaviors such as
chemotaxis, cell proliferation, and cell fate specification,
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mechanical signals are important for guiding a range of phys-
iological processes. At the organismal level, mechanosensing
and mechanotransduction are at the core of many processes,
including bone remodeling, hearing, muscle growth, and blood
pressure regulation [1]. At the cellular level, mechanosensing
is needed during processes like cytokinesis [2] and can help
direct the differentiation of stem cells [3]. Molecularly, mecha-
nosensing can occur through stretch-activated channels in the
plasma membrane [4], through extension of focal adhesion-
associated proteins (e.g., [5–7]), and potentially directly
through myosin motors, which are force-transmitting enzymes
[8–11]. Hearing adaptation likely occurs through a strain-sensi-
tive myosin I family member, which adjusts its position on the
actin filament to modulate the tension on the tip link, control-
ling channel opening [12]. In muscle, more myosin II motor
domains (cross-bridges) are recruited into the load-bearing
state when the muscle contracts under load than when it
contracts without load (the Fenn effect; e.g., [13]). However,
in nonmuscle cells, it is much less clear how myosins directly
respond to cellular-scale mechanical loads because the
myosin IIs are often in disorganized actin polymeric networks,
rather than in paracrystalline arrays like those found in muscle.
It is also unknown whether a single force-sensitive enzyme
(myosin) is sufficient to mediate a cellular response or whether
nonmuscle cellular mechanosensing is a function of an entire
cytoskeletal network. Still, with its load-sensitive kinetic steps,
nonmuscle myosin II is well poised to be at the center of a
cellular-scale mechanosensor.

Previously, we discovered a mechanosensory system that
helps govern cell shape progression during cytokinesis in Dic-
tyostelium [2]. This mechanosensory system corrects natural
shape defects during cell division by recruiting myosin II and
the actin crosslinker cortexillin I to the site of cell deformation
(hereafter referred to as the mechanosensory response). By
using micropipette aspiration, we could control where the
deformation occurred and direct myosin II and cortexillin I
anywhere we wanted along the cortex (Figures 1A and 1B).
Myosin II is essential for the shape control system and without
it, the cells have altered cleavage furrow morphology, produce
many more asymmetrically sized daughter cells, and cannot
withstand mechanical perturbations. This shape control sys-
tem does not depend on the mitotic spindle but is specific
to cells in anaphase through the end of cytokinesis; interphase
and early mitotic wild-type cells do not show myosin II or cor-
texillin I redistribution in response to these mechanical pertur-
bations induced with physiologically relevant pressures.

Here, we demonstrate that myosin II and cortexillin I interact
to form a cellular-scale mechanosensor. Unlike cytokinesis,
which can be rescued with mutant forms of myosin II and cor-
texillin I, our results show that the mechanosensory system is
an exquisitely tuned molecular system that requires fully
wild-type myosin II and cortexillin I function. We show that
myosin II thick-filament assembly and disassembly dynamics
are required for the mechanosensory response, and that the
small GTPase RacE is the cell-cycle-stage specificity factor.
By using motor and lever arm mutants of myosin II, we demon-
strate that the lever arm length specifies the pressure-
threshold dependency of the responses. Finally, to generate
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Figure 1. Myosin II Lever Arm Length Determines the Pressure-Threshold-Dependent Behavior of the Cellular Mechanosensory Response

(A) Representative micrographs showing a positive response to applied pressure. The cell is a myoII: Cit-DBLCBS;GFP-tubulin. Top panels, DIC images.

Lower panels, fluorescence images. Left panels, cell before aspiration; right panels, cell during aspiration. The centrosomes are visible and Cit-DBLCBS

accumulates at the micropipette (arrow). This cell is one of the positive responses of DBLCBS at 0.39 nN/mm2 pressure. Scale bar represents 10 mm.

(B) Micrograph of a mitotic cell expressing wild-type GFP-myosin II, showing a response. The intensity of the cortex inside the micropipette (Ip) and the

opposite cortex (Io) were measured. The Ip/Io ratio was calculated and the log transform was used for analysis.

(C) Cartoon comparing wild-type, 2xELC, DBLCBS, and S456L motors. Blue/pink, motor domain; yellow, essential light chain; red, regulatory light chain.

(D) Graph shows the dependency of the fraction of responses on the applied pressure. Here, the error bars are standard errors where SE = O(f(1 2 f)/n), where

f is the fraction of responses and n is the sample size. Frequency histograms of each data set and a second graph showing the overall average magnitudes

(6SEMs) are provided in Figure S3 (see Experimental Procedures also). At 0.15 nN/mm2 pressure, 2xELC is more responsive than wild-type, S456L, or

DBLCBS myosins (Student’s t test: p < 0.01). Wild-type and 2xELC myosin II are more responsive than DBLCBS at 0.39 and 0.64 nN/mm2 pressure (Student’s

t test: p < 0.01).
tension, the myosin II must pull against stably anchored actin
filaments. By using single-molecule methods, we demonstrate
that cortexillin I dwells on the actin filaments on time scales
much longer than the myosin, providing the stable anchoring
required for mechanosensing. Overall, these data demon-
strate that myosin II and cortexillin I cooperate to mediate
cellular-scale mechanosensing during cell division.

Results

Wild-Type Myosin II Thick-Filament Assembly Dynamics,
Regulatory Phosphorylation, and Mechanochemistry

Are Required for the Mechanosensory Response
To determine how the mechanosensory system operates, we
began with a complete structure-function analysis of myosin
II. First, we examined the role of bipolar thick-filament (BTF)
assembly dynamics in the mechanosensory response by
analyzing cells expressing the nonphosphorylatable myosin
II heavy chain mutant (the 3xAla mutant), which stably assem-
bles into thick filaments, and the constitutively disassembled
myosin II heavy chain mutant (the 3xAsp mutant). We antici-
pated that without assembling into BTFs [14, 15], 3xAsp
myosin II would not accumulate at the micropipette, which
proved to be the case (n = 10) (Figures S1A and S2, Table S1
available online). 3xAla myosin II overaccumulates at the
cleavage furrow cortex during cytokinesis [14, 15]. However,
in all cases, myoII: 3xAla; RFP-tub cells aspirated with a range
of pressures (Dp = 0.22–0.79 nN/mm2; n = 16) failed to accumu-
late 3xAla myosin II at the micropipette (Figures S1B and S2).
Similarly, the minimal domain (assembly domain; GFP-RLC
binding site-assembly domain [GRA]) that is necessary and
sufficient for targeting myosin II to the cleavage furrow cortex
but that lacks the BTF assembly regulatory region did not
accumulate at the micropipette (Dp = 0.31–0.51 nN/mm2; n =
6) (Figures S1C and S2; Table S1). Given that the assembly
domain constitutively assembles into BTFs [16, 17], this result
is analogous to the 3xAla result. These results indicate that the
full thick-filament assembly and disassembly dynamics are
essential for the mechanosensory system.

We then tested whether regulatory light chain (RLC) phos-
phorylation, which increases motor activity, is required for
the mechanosensory response. In Dictyostelium cells, RLC
phosphorylation is not required for cytokinesis, presumably
because RLC phosphorylation activates the myosin II actin-
activated ATPase activity only w3- to 5-fold [18]. In addition,
a 5-fold slower myosin II because of shortening of the lever
arm (DBLCBS, a deletion of both light chain binding sites)
[19] and a 10-fold slower myosin II (S456L) rescued cytokinesis
dynamics [20]. Therefore, myosin II mechanochemistry is not
rate limiting for cytokinesis over at least a 10-fold range of (un-
loaded) velocity. However, RLC phosphorylation was required
for the mechanosensory response. Only 11% (n = 19) of DRLC
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cells complemented with RLC S13A (a mutant RLC where the
phosphorylation site has been mutated to alanine) showed any
detectable response (Figures S1D and S2). In contrast, 64% of
control cells (DRLC cells complemented with a wild-type RLC)
responded to mechanical perturbation (n = 11; Table S1). Thus,
full activation of the myosin II motor domain through regulatory
light chain phosphorylation is required for full mechanosens-
ing ability.

Myosin II Lever Arm Tunes the Pressure-Threshold

Dependency
The results so far indicated that the motor activity itself is a crit-
ical component of the ability of the cells to mechanosense and
suggested that myosin mechanochemistry could be the direct
sensor. Myosin load dependency is commonly studied via
single-molecule assays where either the motor or actin fila-
ment is anchored, and the other component is pulled on with
an optical tweezer [8–11]. However, in our experimental setup,
we use micropipette aspiration to pull on the cell cortex, which
is a network of crosslinked actin polymers with embedded

Figure 2. The Mechanosensitive Localization of

Cortexillin I Requires Myosin II

Example time series (times in seconds) of DIC

and fluorescent images are shown for (A) a

myoII:GFP-cortI cell aspirated with 0.30 nN/mm2

of pressure; (B) a myoII:GFP-cortI;dynhp cell

aspirated with 0.21–0.28 nN/mm2 of pressure; (C)

a myoII:GFP-cortI;S456L cell aspirated with 0.26

nN/mm2 of pressure; and (D) a myoII:GFP-cortI;

myosin (rescue) cell aspirated with 0.45 nN/mm2 of

pressure. Frequency histograms show measure-

ments from all cells measured for each genotype.

As described in the Experimental Procedures, the

dark gray bars of the histograms indicate positive

responses, whereas light gray bars indicate nega-

tive responses. Statistical analysis indicated that

the myoII:GFP-cortI and myoII:GFP-cortI;myoII

strains are statistically distinct (Student’s t test:

p < 0.001). Scale bar represents 10 mm.

myosin II thick filaments [20]. We
reasoned that we should be able to shift
the pressure dependency of the mecha-
nosensory response by altering lever
arm length if myosin II is the cellular-
scale mechanosensor, the myosin II
lever arm is a rigid cantilever, and the
maximum force production (Fmax) by
the myosin motor is inversely related to
lever arm length [21] (Figure 1C). To
analyze the data, we used two strategies
(Experimental Procedures): we mea-
sured a response rate where responses
are defined as a magnitude greater than
two standard deviations of the inter-
phase mean (wild-type interphase cells
do not show a response [see below]
[2]; Figure 1D), and we analyzed the
entire distribution of the response mag-
nitudes (Figure S3). The combination of
analysis strategies yielded a more
complete picture of the lever arm depen-
dency. First, we defined the pressure
dependency for the accumulation of

wild-type myosin II (9 nm lever arm and 3 mm/s unloaded
velocity) to the micropipette (Figure 1D; Figure S3). We then
studied two lever arm mutants: DBLCBS and 2xELC (Figures
1A, 1C, and 1D). DBLCBS (2 nm lever arm, 0.6 mm/s unloaded
velocity), which has a much higher predicted Fmax, required
greater applied pressure in order to respond (Figure 1D;
Figure S3). Within the dynamic pressure range available for
these experiments, the DBLCBS mutant myosin II did not
respond to wild-type levels. In contrast, 2xELC (13 nm lever
arm, 4 mm/s unloaded velocity), which is predicted to have
a lower Fmax, required much lower pressures to achieve wild-
type levels of response (Figure 1D; Figure S3). Finally, because
the unloaded velocities of the three lever arm lengths might
explain the differences in responsiveness, we tested the 10-
to 15-fold slower S456L myosin II (9 nm lever arm, 0.2 mm/s un-
loaded velocity), which has a wild-type lever arm [22]. The
S456L myosin II showed a pressure dependency that was
lower than wild-type myosin II at intermediate pressures, but
then at high pressures, S456L myosin II responded nearly at
wild-type levels and at higher levels than DBLCBS did
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(Figure 1D; Figure S3). Thus, the unloaded velocity of myosin II
is not the major determinant; rather the lever arm length tunes
the pressure range over which the cell responds to applied
mechanical strain. The simplest explanation is that the
mechanical stress stabilizes the myosin II motor in the strongly
bound state (increasing the duty ratio), and the lever arm
length specifies the pressure required to lock the myosin II
motor onto the actin. Because the slopes of each of the pres-
sure curves are similar between the myosin motor and lever
arm mutants, this observation suggests that it is a pressure
threshold that triggers the response and the force amplifica-
tion by the lever arm tunes where this threshold sits.

Cooperative Interactions between Myosin II and Cortexillin

I Are Required for the Mechanosensory System
Because myosin II and cortexillin I are recruited to the micropi-
pette [2], we then asked whether these proteins depend on
each other for recruitment. In a myoII null background, cortex-
illin I did not localize in response to mechanical load (Dp =
0.15–0.43 nN/mm2; n = 15) (Figure 2A). One hypothesis was
that myosin II may help mobilize the crosslinked actin network,
promoting cortexillin I mobility. To partially phenocopy this
condition [23], we silenced expression of the actin crosslinker
dynacortin by using RNAi in a myoII:GFP-cortI cell (Figure 2B).

Figure 3. The Mechanosensitive Localization of

Myosin II Requires Cortexillin I

(A) Wild-type cortexillin I, DNcortI, and cortI CT

were tested for their ability to restore mechano-

sensory responses. All three proteins rescue

cytokinesis [24, 25].

(B–D) Example time series (times in seconds) of

DIC and fluorescence images are shown for (B)

a cortI:GFP-myoII cell; (C) a cortI: GFP-myoII;

RFP-cortI (full-length cortexillin I) cell; and (D)

a cortI: GFP-myoII;RFP-DNcortI cell. Frequency

histograms show measurements from all cells

measured for each genotype. Statistical analysis

indicated that the cortI: GFP-myoII;RFP-tub and

cortI: GFP-myoII;RFP-cortI strains are statisti-

cally distinct (Student’s t test: p < 0.0001). Scale

bar represents 10 mm.

Cortexillin I recruitment to the pipette
was not restored in dynacortin RNAi cells
(Dp = 0.13–0.45 nN/mm2; n = 13). Consis-
tent with its lower mechanosensitivity
particularly at lower pressures, S456L
myosin II only partially rescued GFP-
cortI recruitment to the micropipette
(Dp = 0.24–0.87 nN/mm2; n = 13) (Fig-
ure 2C). However, expression of unla-
beled wild-type myosin II in a myoII:
GFP-cortI background restored GFP-
cortexillin I recruitment in 44% of the
cells (Dp = 0.22–0.57 nN/mm2; n = 32)
(Figure 2D).

We then asked whether myosin II
depends on wild-type cortexillin I (Fig-
ure 3A). In two different cortexillin-I null
strains, GFP-myosin II did not move to
the micropipette (Figure 3B; Table S1).
However, this defect could be rescued
to wild-type levels only with full-length
cortexillin I (70% of cells responding,

n = 10) (Figure 3C; Table S1). Previous structure-function
studies indicated that only the carboxy-terminal domain of
cortexillin I (cortI CT) is needed for cytokinesis, for PIP2 binding
and for actin crosslinking in vitro [24] (Figure 3A). We tested
whether cortI CT (Table S1) and DN-cortextillin I (DNcortI),
which is missing the amino-terminal calponin-homology
domain that provides an additional actin-binding site, are suffi-
cient for mechanosensing. CortI CT failed to rescue mechano-
sensing, and DNcortI rescued only to intermediate levels
(Figure 3D; Table S1). Thus, as with myosin II, wild-type cortex-
illin I activity is required for mechanosensing. Because cortex-
illin I is an actin crosslinking protein, we tested whether this
dependency on cortexillin I is a phenomenon general to any
actin crosslinking protein. We analyzed mechanosensory
responses in cells devoid of the actin crosslinkers dynacortin,
enlazin, and fimbrin. None of these proteins was required for
the mechanosensory response (Figure S4), which is consistent
with the observation that they do not move to the micropipette
as myosin II and cortexillin I do [2]. Overall, cortexillin I and
myosin II depend on each other for accumulating in response
to mechanical perturbation as part of the mechanosensory
shape control pathway.

Myosins have load-sensitive actin-binding properties; yet
for myosin to experience these loads, the actin filaments
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Figure 4. Single-Molecule Analysis of Cortexillin I-Actin Interactions

(A) Cartoon depicts the geometry of the experimental set up. GFP-cortexillin I is anchored to the substrate through the GFP via GFP antibodies. An actin

dumbbell is steered into position by means of a dual beam optical trap.

(B) An example trace showing the bead position (top) and the cross-correlation of the fluctuations of the two beads (bottom) holding the actin dumbbell.

(C) Dwell time distribution showing the distribution of bound lifetimes. The mean t is 550 ms (640 ms, n = 776 events). Errors are standard errors from fitting

bootstrap-sampled data sets.
must be anchored to the actin network or to the plasma
membrane. These anchor points must be longer lived than
the myosin motor-actin interaction. Unloaded Dictyostelium
myosin II strongly bound state time is 2.4 ms [22], which may
increase 10-fold to 24 ms under load (Supplemental Data).
Because cortexillin I is essential for the mechanosensory
response, we tested whether it remains bound to the actin
for longer time scales than the myosin motor domain does.
Previous FRAP studies indicated that cortexillin I turns
over on the 5 s time scale [20]. However, in vivo FRAP may
reflect multiple protein interactions. Therefore, we used
a single-molecule approach to directly test the lifetime of a
single cortexillin I-actin interaction (Figure 4A). We purified
GFP-cortexillin I and measured the cortexillin I-actin dwell-
time distribution (Figures 4B and 4C). We found that cortexillin
I bound a single actin filament with an average dwell time (t) of
550 ms, which is up to 200-fold longer than the myosin motor-
actin strongly bound state time.

RacE Is the Cell-Cycle Stage Specificity Factor
Previously, we showed that without extreme deformation, this
mechanosensory pathway was not active in wild-type cells
during interphase [2]. Because RacE presides over a pathway
of global actin crosslinking proteins—dynacortin, enlazin, and
fimbrin—that control (resist) contractility dynamics during
cytokinesis [20, 25, 26], we hypothesized that it might inhibit
the mechanosensory pathway. We first confirmed that mitotic
RacE mutant cells were mechanosensory. Indeed, RacE null
cells accumulated GFP-myosin II at the micropipette during
cytokinesis (40% responses; n = 5) (Figure 5A). However,
during interphase, 62% (n = 37) of RacE null cells responded
by accumulating GFP-myosin II (Figure 5B) and 41% (n = 37)
responded by accumulating GFP-cortexillin I (Figure 5C) at
the micropipette. This effect was reversed (rescued) by ex-
pressing mCherry-RacE in these RacE null cells (10%; 2 out
of 20 cells responded) (Figure 5D). Thus, in wild-type cells,
RacE shields this mechanosensory system during interphase
(see Discussion).

Discussion

A feedback control system requires a sensor and a transducer.
In the shape control system described here (Figure 6), the cell
responds to mechanical perturbations in order to correct the
shape defect so that high-fidelity (successful and symmetrical)
cytokinesis may proceed. Myosin II and cortexillin I work as an
ensemble to sense and respond to mechanical perturbation.
Myosin II is uniquely poised to be a sensor and a transducer
because it naturally has load-dependent actin-binding steps.
Limited by the energy available from ATP hydrolysis, myosins
must respond to applied forces either by holding on to the actin
filament (myosin I and myosin II), by back stepping (myosin V),
or by releasing from the actin track altogether [27]. However, for
such a mechanism to operate, the actin filament itself must be
anchored to the network in order for the myosin to generate
enough tension to stall so that it dwells on the actin polymer.
In this cytokinesis mechanosensory shape control system, cor-
texillin I appears to be a key actin crosslinker that works in
concert with myosin II to respond to applied cellular deforma-
tion. Therefore, this study reveals that a cellular-scale mecha-
nosensor requires three critical elements: the myosin motor
domain with its active force transducer (myosin ATPase) and
force amplifier (myosin lever arm), a force-sensitive element
that allows myosin thick-filament accumulation, and an actin
crosslinker (cortexillin I in this case) that stabilizes the actin
filament so that tension may be generated (and therefore
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experienced) by the motor domain as it goes through its power
stroke (Figure 6A).

The lever arm tunes the pressure-threshold dependency of
the response. From recent single-molecule studies, myosin I
and myosin II move through substeps with different load sensi-
tivities as they translocate along the actin filament [9, 11].
Complete transition through the substeps is required for
ADP to be released, allowing ATP to bind so that the motor
can release from the track. By varying the lever arm length,
we were able to tune the pressure-threshold dependency of
the cell’s response. Similar to the single-molecule assays,
our observations suggest that the mechanical stress that we
apply to the cortex leads to strain on the myosin lever arm, pre-
venting the motor from undergoing its full working stroke and
locking the motor onto the filament for a longer period of time.
Because of the longer lever arm (assuming the lever arm is
a rigid rod and Fmax f [lever arm length]21; [21]), 2xELC (est.
Fmax = 2 pN) should require lower overall forces to strain the
lever arm than the wild-type motor (Fmax = 3 pN; [21]); consis-
tently, it required less pressure to accumulate at the micropi-
pette. In contrast, the short lever arm mutant DBLCBS (est.

Figure 5. RacE Is the Cell-Cycle Stage Specificity

Factor that Determines when Myosin II and

Cortexillin I Can Redistribute in Response to

Mechanical Strain

Example time series (times in s) of DIC and fluo-

rescence images are shown for (A) a mitotic

RacE: GFP-myoII cell; (B) an interphase RacE:

GFP-myoII cell; (C) an interphase RacE: GFP-

cortI cell; and (D) an interphase RacE: mCh-

RacE;GFP-myoII cell. Frequency histograms

show measurements from all cells measured for

each genotype. Scale bar represents 10 mm.

Fmax = 14 pN) was much less sensitive
and did not reach full wild-type mecha-
nosensory response levels within the
available pressure range for these ex-
periments. This is consistent with the
idea that a shorter lever arm requires
greater forces to stall the motor. Be-
cause of its very short unloaded strongly
bound state time (ts), it has not been
feasible to measure the load depen-
dency of ts for Dictyostelium myosin II.
However, by comparing the active radial
stress that we attribute to the cleavage
furrow cortex during furrow ingression
[26], the concentration of myosin II at the
furrow cortex [15], and the pressure de-
pendency of the mechanical response
(this paper), estimates indicate that
myosin II may undergo a 5- to 10-fold
increase in duty ratio under mechanical
stress (Supplemental Data). This is
within range of the 5- to 12-fold increase
in duty ratio for other myosin IIs [8]. One
alternative hypothesis is that 2xELC
achieves greater mechanosensitivity
because it has a higher actin-activated
ATPase activity that is insensitive to
RLC phosphorylation (i.e., 2xELC is an
unregulated motor, which behaves

more similarly to RLC-phosphorylated wild-type myosin II).
However, we disfavor this possibility because DBLCBS is
similarly unregulated [21] but is significantly less mechanosen-
sitive. Another alternative hypothesis is that the mechanosen-
sory responsiveness is simply due to differences in the un-
loaded velocities of the different motors (wild-type, 3 mm/s;
2xELC, 4 mm/s; and DBLCBS, 0.6 mm/s; [21]). However, we
disfavor this hypothesis because the 10-fold slower S456L
myosin-II (0.2 mm/s; [22]) was more responsive than the 5-fold
slower DBLCBS mutant. S456L achieves its reduced unloaded
velocity through a 3-fold longer ADP-bound state and a normal
step size [22]. Although the S456L protein undoubtedly un-
dergoes its complete conformational change, without load it
likely releases prematurely, yielding a fractional productive
step. Thus, our observations suggest that loading this motor
restores its ability to lock onto the actin filaments. These
observations are consistent with in vivo mechanical data on
interphase and dividing cells [20]. During interphase, cells ex-
pressing S456L have mechanical properties intermediate
between wild-type and myoII null cells. However, during cyto-
kinesis, the S456L mutant fully restores cell mechanics and
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cytokinesis furrow ingression dynamics to wild-type levels,
suggesting that the mechanical stress in the dividing cell
allows the S456L myosin II to function like a wild-type motor.

The mechanosensory system is likely to be highly coopera-
tive. Based on our data, we find that elements of myosin mech-
anochemistry (full ATPase activity, regulatory light-chain
phosphorylation, and lever arm) as well as bipolar thick fila-
ment assembly dynamics are required for the response.
Thick-filament assembly requires a nucleation step and is
delicately balanced by small electrostatic charge differences
just downstream of the assembly domain [17, 28]. Our obser-
vations suggest that as mechanical stress locks the myosin
II motor onto actin, it promotes the formation of bipolar thick
filaments. Simulations indicate that a potential force-sensitive
step could in fact be in the transition between assembly-
incompetent and -competent states (Supplemental Data).
Further, cortexillin I accumulates directly in a myosin II
activity-dependent manner. Cortexillin I responds cotempor-
ally with myosin II, S456L only partially restores cortexillin I
recruitment consistent with S456L’s weak activity, and cortex-
illin I accumulates in interphase RacE mutants similar to
myosin II. We suggest that mechanical stress in the cortical
actin network stabilizes myosin II and cortexillin I, allowing
both to accumulate in a cooperative fashion.

This study has other important implications for both cellular
mechanosensing and cell shape control. The global cortex has
increased mechanical deformability during cytokinesis as
compared to interphase [20], and we now find that the Rac-
family small GTPase RacE determines the cell cycle specificity
of the mechanosensory nature of the cortex (Figure 5B). This
Rac acts as an inhibitor of cytokinesis contractility [26].
Because RacE is required for cortical tension and mainte-
nance of other actin crosslinkers in the cortex ([20, 25] and
references therein), RacE controls mechanical resistance.
Given the fluid nature of RacE null cells [26], its presence in
wild-type cells may make the cortex more elastic (solid-like)
so that the mechanical stress is absorbed by the crosslinked
network. During wild-type cell division (or in interphase RacE
null cells), the cortical network becomes more deformable so
that the myosin II/cortexillin I sensor now bears the mechanical
stress, directing these proteins’ accumulation at sites of shape
deformation.

In addition to the shape control system, the cooperative
interactions between myosin II and cortexillin I undoubtedly
drive contractility at the cleavage furrow cortex. Null mutants
in either gene have similarly altered cleavage furrow morpho-
logy, asymmetry in daughter cell sizes, and similar furrow
ingression dynamics [2, 20, 26, 29]. The fact that neither
protein requires the other for localization to the cleavage
furrow cortex highlights that there are multiple pathways that
direct their localization. Once myosin II and cortexillin accumu-
late at the furrow cortex, myosin II motors likely pull against
cortexillin I, generating contractile stress in the actin network
to help drive cleavage furrow constriction. In other scenarios,
other crosslinkers or combinations of crosslinkers may also
interact cooperatively with myosin II in a similar manner as cor-
texillin I does here.

In sum, this study reveals that myosin II mediates cellular-
scale mechanosensing in nonmuscle cells to monitor and
correct cell shape changes during cytokinesis. Because Dic-
tyostelium are protozoans with numerous features similar to
human cells, this mechanosensory system likely reflects an
early requirement for cells to feel and respond to mechanical
inputs from their environment and to monitor shape change
progression during cell division. Myosin II may have evolved
some of its mechanosensitive enzymatic steps in this context.
Mechanosensitive myosin-dependent processes like hearing,
muscle contraction, and cardiovascular function are undoubt-
edly late evolutionary beneficiaries of this cellular-scale
mechanosensory module.

Experimental Procedures

Cell Strains

Dictyostelium discoideum strains and plasmids are described in full in the

Supplemental Experimental Procedures and Table S1.

Micropipette Aspiration

Micropipette aspiration experiments were performed as previously

described [2]. In short, micropipettes were pulled to an inner radius, ranging

from 2 to 3 mm. With a motorized water manometer system, aspiration pres-

sure was applied to the surface of the cell. To quantify responses, the fluo-

rescent signal intensities (after background subtraction) of the cortex inside

the pipette (Ip) and outside the pipette at the opposite cortex (Io) were

measured. Ratios of Ip/Io greater than 1.39 (log(Ip/Io) = 0.14), which is two

standard deviations above the wild-type interphase mean (as defined in

[2]), were considered positive responses. In the frequency histograms, the

positive responses are colored dark gray and negative responses are

colored light gray. To determine standard errors for the fraction of

responses (for Figure 1D), we used SE = O(f(1 2 f)/n), where f is the fraction

Figure 6. Mechanosensory Cell Shape Control System

(A) Cartoon depicts the mechanical circuit between myosin II and cortexillin

I that mediates mechanosensing. Because tension is required to balance

the myosin power stroke, which generates a force (F) on the actin filament,

cortexillin I likely anchors the actin filament, providing the tension (T)

needed to increase the strongly bound state time (ts). This cross-communi-

cation between myosin II and cortexillin I stabilizes each protein on the

actin, promoting their accumulation. This stabilization also appears to

provide feedback on myosin II thick filament assembly, allowing thick fila-

ments to form, a requisite for accumulation.

(B) This mechanosensory system ensures successful high-fidelity cytoki-

nesis. Mechanical perturbation halts cytokinesis during early stages of cyto-

kinesis and triggers accumulation of myosin II and cortexillin I to the site of

mechanical deformation during all stages of cytokinesis. Cooperative inter-

actions between myosin II and cortexillin I define the cellular-scale mecha-

nosensor.
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of responses and n is the sample size. We also analyzed the entire histo-

grams for overall mean and standard errors for statistical testing (Student’s

t test). This approach does not require any additional assumptions about the

responses, and we find that the use of both types of analyses provides

a more complete picture of the data. Finally, particularly for the lever arm

length and S456L mutants, we analyzed and compared the total signal

intensities of the aspirated cells prior to aspiration to confirm that the exact

cells analyzed had comparable (statistically identical) expression levels.

Similar expression levels for each protein were generally the case across

all of the strains studied.

Single-Molecule Analysis

His-tagged GFP-cortexillin I was expressed and purified to homogeneity

from E. coli with polyethyleneimine and ammonium sulfate cuts followed

by Ni2+-NTA, size exclusion, and mono S column chromatography. The puri-

fied protein was tested in actin high-speed cosedimentation assays, con-

firming that it saturated actin with the expected 1 mole of cortexillin I dimer

per 4 actins (data not shown) [30]. The GFP-cortexillin I was then anchored

to a platform bead with anti-GFP monoclonal antibody (QBiogene, 3E6).

Neutravidin-coated 1 mm biotinylated polystyrene beads (Molecular Probes)

were attached to the ends of actin filaments assembled with 10% biotin-

labeled actin monomers, creating actin dumbbells. An actin dumbbell was

steered with a dual-beam optical trap by using acousto-optic modulators

over individual platform beads in search of platforms that interacted with

the actin filament. The positions of both beads of the actin dumbbell and

their cross-correlation were monitored. Cortexillin I-actin interactions

were determined by a decrease in the cross-correlated fluctuations of the

two beads. Binding lifetimes were measured and plotted. The distributions

largely fit a single exponential from which the cortexillin I-binding lifetime

was determined. The probability that binding events were the result of

two cortexillin molecules, instead of one, is w4%. The buffer used for these

assays contains 25 mM KCl, 25 mM imidazoledHCl (pH 7.5), 1 mM EGTA, 4

mM MgCl2, 0.086 mg/mL glucose oxidase, 0.014 mg/mL catalase, 0.09 mg/

mL glucose, and 1 mM DTT.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures, Sup-

plemental Analysis, seven figures, and one table and can be found with

this article online at http://www.cell.com/current-biology/supplemental/

S0960-9822(09)01400-6.
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Cell Strains 

Dictyostelium discoideum strains are presented in Table S1.  Constructs were transformed into 
wild type strain (Ax2 or Ax3:Rep orf+; HS1000) [1], the myosin-II heavy chain null (myoII) strain 
(mhcA; HS1) [2], ΔRLC:RLCwt, ΔRLC:RLCS13A [3], cortexillin-I null strains (cortIRF and 
HS1151) [4], and RacE24EH6 null (and its parental DH1) strain [5] and selected in 1.4x HL5, 
containing 8% FM (Enriched HL-5) and 15-30 μg/ml G418, 4 μg/ml blasticidin, and/or 15-30 
μg/ml hygromycin as appropriate.  Actin crosslinkers dynacortin, enlazin, and fimbrin were 
silenced using RNAi, and knockdown was confirmed by western analysis (not shown) as 
described previously [6-8].   

 
Tubulin was observed using pDXA-Bl: RFP-α-tubulin or pDRH:GFP- or RFP-α-tubulin [9].  
Myosin-II was observed by using GFP-myosin-II:pBIG [10], and GFP-3xAla:pBIG and GFP-
3xAsp:pBIG constructs [11].  The citrine (enhanced YFP) fluorescent protein labeled myosin-II 
series was constructed in pDRH for this paper. The citrine cDNA was ligated into the Bgl II and 
Sal I sites in pDRH.  A Sac I site was introduced in the myosin-II heavy chain cDNA at the end 
of the lever arm as defined in [12].  The myosin-II heavy chain tail was subcloned into the Sal I 
and Not I sites of pDRH, with the 5’ primer carrying the Sal I and Sac I sites.  The motor 
mutants were amplified using a 5’ primer, which included an in-frame Sal I site, and a 3’ primer, 
which included the in-frame Sac I site.  The two lever arm mutants (2xELCBS and ΔBLCBS) 
were constructed as defined in [12].  The GRA myosin fragment includes a GFP fused to the 
regulatory light chain binding site, which is then linked to the assembly domain [13, 14].  

 
The RFP-cortexillin full-length, RFP-ΔNcortI, RFP-cortI CT, and mCherry-RacE expression 
plasmids were constructed by first generating RFP- and mCherry-tagging cassettes in 
pBlueScript, similar to our GFP-tagging system described previously [4, 9].  Once each cDNA 
was cloned into the respective tagging cassette, the fluorescent protein-fusion cDNAs were 
subcloned into pDRH for expression in Dictyostelium.  
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SUPPLEMENTARY ANALYSIS 

The mechanosensory system involves three apparent elements: load-sensitive motor domain-
actin interactions, cortexillin-I-actin anchoring, and myosin-II thick filament assembly dynamics.  
Here, we deal with the load-sensitivity of the motor domain and the myosin-II thick filament 
assembly dynamics. 
 
Load sensitivity of the motor domain 

From the concentration at the cleavage furrow cortex during cytokinesis, myosin-II reaches 
concentrations of 5-6 μM and furrow cortex:polar cortex ratios of ~1.6-2.  These ratios were 
originally measured using ratio imaging with volumetric indicators [15].  However, because the 
myosin-II concentrates along the lateral edges of the cortex, the volumetric normalization offers 
only a nominal correction [8].  We assessed the concentration ratio of furrow to polar cortex, 
which agrees directly with the ratio from the volume-corrected analysis (Fig. S5). 
 
With 5-6 μM myosin-II concentration and the volume of the cortex under the micropipette (Fig. 
S6), this corresponds to 40,000 myosin hexameric monomers (M; each with two motor heads) 
in the bipolar thick filament (BTF) form in the cortex.  We estimate the active surface stress 
from myosin-II where the myosin-II-generated surface stress (σ) is  
 

σ = n heads in BTF form x duty ratio x F/head       
    SA 

 
where F is the force generated by a myosin head (3 pN), duty ratio is the fraction of myosin 
heads in the force-generating state as compared to the total number of available heads 
(assumed to be in the BTF assembled state and is 0.6% for unloaded Dictyostelium myosin-II), 
and SA is the surface area of the cortex under the micropipette.  From this, we calculate σ to 
be 0.04 nN/μm2, which agrees with the active radial stresses at the cleavage furrow (0.04-0.1 
nN/μm2) determined previously [16].  However, for accumulation of myosin-II to the 
micropipette, 0.4-0.6 nN/μm2 pressure was required.  If the myosin-II heads are recruited into 
the load-bearing state to directly off-set the applied pressure, then the myosin-II could 
reasonably undergo a 5-10-fold shift in duty ratio (0.4 nN/μm2/0.04 nN/μm2), which compares 
well with the load-dependent shifts in duty ratio observed for other myosin-II enzymes [17, 18].  
 

Myosin-II thick filament assembly 

Our data indicate that myosin-II must be able to undergo full assembly-disassembly in order to 
accumulate during the mechanosensory response.  These observations suggest that there is 
likely to be a mechanosensitive step during thick filament assembly.  The assembly pathway 
and the kinetic parameters are largely known.   
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M0 is the assembly incompetent (stabilized in part by heavy chain phosphorylation) hexameric 
monomer, M is the assembly-competent monomer, D is the parallel dimer, T is anti-parallel 
tetramer, which is thought to be the first stable nucleus, and BTFn is the bipolar thick filament 
with n dimers.  We consider BTFs that include 3 to 36 dimers. The rates for conversion 
between M0 and M were chosen so that, at steady state, M0 accounts for approximately 80% of 
total myosin [19].  Rates for k2, k-2, k3, k-3, k4 and k-4 are derived from [20, 21].  The value of k-5 
is derived from fluorescence recovery after photobleaching analysis [8, 22].  We also make the 
assumption that every time a dimer is added or released, the probability of further 
addition/removal is the same.  Simulations based on this model were used to determine where 
the system is most sensitive. First, we allowed the myosin BTFs to assemble until steady state 
was reached.  Then, to determine where force generation can have an appreciable effect on 
BTF concentration, we perturbed all 10 kinetic parameters in the model 10-fold, which was the 
amount estimated from the potential shift in duty ratio and strongly bound state time estimated 
above. The greatest effect was found to be in the rates between M and M0.  A ten-fold 
decrease in k-1 resulted in a ~50% increase in myosin found in the BTF after 60 s (Fig. S7).  To 
mimic the 3xAla mutants, we also eliminated the assembly incompetent hexamer, M0.  In this 
case, the effect of changing other parameters was negligible, because at this point, nearly all 
the myosin is already in BTF form.  Finally, we present the time-course for simulated assembly, 
which occurred on the minute time-scale, and the distribution of sizes of BTFs at 60 s 
compared to the initial steady state.  
 
Three conclusions may be drawn from this analysis.  First, the largest impact on the assembly 
dynamics comes from changing the rates of converting M0 to M.  This could occur because 
myosin motor binding to actin polymers is highly cooperative.  By stabilizing motor domains on 
the actin this may allow free M to bind the actin placing them in close proximity for assembly 
into BTFs.  It is notable that at steady state, our simulations indicate that most of the thick 
filaments do not reach the full 72 mer size [20].  Rather they populate a distribution of 
intermediate sizes of BTFs, which is similar to previous simulations of the assembly of muscle 
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myosin thick filaments [23].  Therefore, it is likely that when new M binds the actin polymers 
they directly insert into pre-existing BTFs.  Moreover, the addition of actin polymers to myosin-II 
BTF assembly reactions in vitro eliminates the lag-phase characteristic of the nucleation phase 
[20].  This observation has interesting implications for myosin-II recruitment in other scenarios 
as well.  For example, myosin-II may typically exist as a mixture of intermediate BTF sizes so 
that when signals trigger accumulation, the free monomers just have to incorporate directly into 
the BTFs.  Myosin heavy chain phosphorylation then would ensure that the system relaxes 
back to the initial steady state distribution after the accumulation signal terminates.  Second, 
these simulations demonstrate that 3xAla myosin-II would not respond to mechanical stress 
because there is insufficient available free M to respond.  Third, these simulations offer one 
explanation why myosin-II accumulation in response to mechanical load requires one to a 
couple of minutes; the kinetic parameters for myosin BTF assembly are set to require that 
amount of time for accumulation.  However, it is important to bear in mind that this analysis is 
not intended to be a full treatment of the system as it clearly does not include other aspects 
such as cytoplasmic viscosity, cortexillin-I dynamics, and membrane/cortex surface and 
curvature.   
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Figure S1.  Wild type myosin-II assembly dynamics are required for the 
mechanosensory response.  Time series (times in s) of DIC and fluorescence images are 
shown for (A) a myoII: GFP-3xAsp cell; (B) a myoII: GFP-3xAla cell; (C) three different myoII: 
GFP-RLCBS-AD (GRA) cells expressing varying amounts of GFP-GRA and aspirated using 
pressures of 0.39, 0.44 and 0.51 nN/μm2, respectively, and (D) a ΔRLC: RLC(S13A);GFP-
myoII.    Frequency histograms show measurements from all cells measured for each 
genotype.  As described in the Methods, the dark grey bars of the histograms indicate positive 
responses, while light grey bars indicate negative responses. Scale bar, 10 μm.    
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Figure S2. Summary of myosin-II mutants analyzed and a comparison of their 
requirements for mechanosensing vs. cytokinesis. Pressure, P. 
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Figure S3. Frequency histograms showing the responses of wild type, ΔBLCBS, 2xELC 
and S456L myosin-II motors at the indicated pressures.  These data in panel (A) are 
summarized in Fig. 1D in the main text.  While the intensities are easily separated as 
responses and non-responses as described in the Methods, for an independent check we 
present the pressure dependency of the mean log[Ip/Io] (±SEM) values for the entire datasets 
(B).  This approach considers all of the measurements without added assumptions and in this 
presentation, the data still fall into three classes according to lever arm length (2xELC, wild 
type and ΔBLCBS).  Student’s t-test results are included in Fig. 1 legend in the main text. 
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Figure S4.  Actin crosslinkers dynacortin, fimbrin, and enlazin are not required for 
mechanosensing.  Cells expressing GFP-myosin-II and RFP-tubulin had dynacortin, enlazin 
or fimbrin silenced by RNA interference (see Supplementary Methods).  Arrows show the 
responses.  Scale bar, 10 μm. 
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Figure S5. GFP-myosin-II distribution vs. time.  Time is in minutes.  Dx represents a 
distance of 2.7 μm, which was set to time 0 as described [16]. Ratio of average GFP-myosin-II 
intensity in the furrow cortex relative to the average intensity of the polar cortex was measured 
every 15 seconds (blue line).  Two-color images reveal the mitotic spindle (RFP-tubulin) and 
GFP-myosin-II localization at each time-point.  Data are based on n=10 cells; the curve is the 
average±SEM.  The intensity ratios of 1.4-2 observed in the micropipette (Fig. S6) are 
comparable to the intensity ratios observed at the cleavage furrow cortex.   
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Figure S6.  Dimensions of the hemispherical cap, radial myosin-II intensity and kinetics of myosin-II accumulation at the 
micropipette.  (A) The geometry of the cortex in the micropipette.  Here we assume the cortex is 0.35-μm thick comparable to other 
measurements.  From this, the volume of the cytoplasm in the hemispherical cap is 22 μm3, and the volume of the hemispherical cap 
cortex is 11 μm3.  The surface area of the hemisphere is 40 μm2.  (B)  The circumferential line plot shows the Cit-wild type myosin-II 
signal intensity around the cortex measured for 9 responding cells.  The 0 μm corresponds to the 0 point in panel A.  The global 
average intensity ratio in the hemispherical cortex (from -4 to 4 μm) is 1.5±0.42 (mean±SD, n=410).  (C) To detail the kinetics of the 
response, we analyzed the time required for the peak response to occur. Graph shows an example time-course.  From the start of 
the movie, there is a lag time before any myosin-II accumulation is detectable, and the response time is the time required for the 
signal to rise from baseline to the peak.  The total time is the time from the start of the experiment to the peak.  For this kinetic 
analysis, we normalized the intensity in the pipette (Ip) to the local intensity of the cytoplasm (Ic).  This region was more dependably 
in focus at each time point.  As a result, the response ratio is a little lower than when normalizing to the opposite cortex (Io).  The 
mean±SEM times and the range of the times are provided for each phase.  The dataset is based on the same 9 cells as analyzed for 
panel B. 
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Figure S7.  Simulation and sensitivity analysis reveals a potential force-sensitive step in myosin-II bipolar thick filament 
assembly.  (A) Graph shows that a 10-fold change in k1 yields a 50% increase in assembled myosin-II.  3xAla is already nearly 
completely assembled, preventing further force-sensitive assembly.   (B) Graph shows that force-induced assembly occurs on the 
minute time-scale.  Time 0 shows the initial steady state before k-1 is shifted down 10-fold (to mimic the impact of force).  By 60 s, the 
concentration of myosin in BTF form is increased 1.5-fold, similar to that observed in the micropipette.  (C) Graph shows the 
distribution of BTF sizes before (without force – steady state) and 60 s after (with force – pre-steady state) the 10-fold change in k-1.  
Shifting k-1 increases the average size of the BTFs.   
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Table S1. Dictyostelium strains used in this study 
Strain Genotype Question # Responses/ 

Total Cells 
 
myoII:: RFP-α-tubulin; GFP-myoII; pLD1 

 
myoII(HS1)::RFP-α-tubulin,BlR:pDXA-Bl; GFP-myoII, HygR: pDRH; 

pLD1,G418R: pLD1A15SN 

 
Influence of crosslinkers on 
mechanosensory response 

 
1/4 

myoII:: RFP-α-tubulin; GFP-myoII; dynhp myoII(HS1)::RFP-α-tubulin,BlR:pDXA-Bl; GFP-myoII, HygR: pDRH; 
dynhp,G418R: pLD1A15SN 

 2/4 

myoII:: RFP-α-tubulin; GFP-myoII;fimhp myoII(HS1)::RFP-α-tubulin,BlR:pDXA-Bl; GFP-myoII, HygR: pDRH; 
fimhp,G418R: pLD1A15SN 

 6/13 

myoII:: RFP-α-tubulin; GFP-myoII; enlhp myoII(HS1)::RFP-α-tubulin,BlR:pDXA-Bl; GFP-myoII, HygR: pDRH; 
enlhp,G418R: pLD1A15SN 

 4/7 

 
myoII::GFP-cortI 

 
myoII(HS1)::GFP-cortI,HygR:pDRH; G418R:pLD1A15SN 

 
Cortexillin-I dependency on 
myosin-II 

 
0/15 

myoII:: GFP-cortI; dynhp myoII(HS1)::GFP-cortI,HygR:pDRH; dynhp,G418R:pLD1A15SN  0/13 

myoII:: GFP-cortI; S456L myoII(HS1)::GFP-cortI,HygR:pDRH; S456L,G418R:pBIG  1/13 

myoII:: GFP-cortI; myoII myoII(HS1)::GFP-cortI,HygR:pDRH; myoII, G418R:pBIG  14/32 

 
KAx3:: GFP-myoII; RFP-α-tubulin 

 
KAx3::RFP-α-tubulin, HygR:pDRH; GFP-myoII, G418R: pBIG 

 
Wild type parent of cortI(RF) 
strain 

 
6/7 

cortI:: GFP-myoII; RFP-α-tubulin cortI(RF)::RFP-α-tubulin, HygR:pDRH; GFP-myoII, G418R: pBIG Myosin-II dependency on 
cortexillin-I 

0/10 

cortI:: GFP-myoII; RFP-ΔNcortI cortI(RF):: RFP-ΔNcortI, HygR:pDRH; GFP-myoII, G418R: pBIG  6/19 

cortI:: GFP-myoII; RFP-cortI cortI(RF):: RFP-cortI, HygR:pDRH; GFP-myoII, G418R: pBIG  7/10 

cortI1151:: GFP-myoII; RFP-α-tubulin cortI1151::RFP-α-tubulin,HygR:pDRH;GFP-myoII, G418R: pBIG  0/15 

cortI1151:: GFP-myoII; RFP-cortICT cortI1151:: RFP-cortICT,HygR:pDRH; GFP-myoII,G418R: pBIG  1/13 

cortI1151:: GFP-myoII; RFP-cortI cortI1151:: RFP- cortI,HygR:pDRH; GFP-myoII,G418R: pBIG  5/8 
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Strain Genotype Question # Responses/ 

Total Cells 
myoII: RFP-α-tubulin; GFP-myoII myoII(HS1)::GFP-myoII, G418R:pBIG; RFP-α-tubulin, HygR: 

pDRH 
Assembly dynamics (wild 
type control) 

16/26* 

myoII: RFP-α-tubulin; GFP-GRA myoII(HS1)::GFP-RLCBS-Assembly Domain; RFP-α-tubulin, 
HygR: pDRH 

Sufficiency of minimal 
cleavage furrow targeting 
domain 

0/6 

myoII: RFP-α-tubulin; GFP-3xAsp myoII(HS1)::GFP-3xAsp myoII, G418R:pBIG; RFP-α-tubulin, 
HygR:pDRH 

Myosin assembly dynamics  0/10 

myoII: RFP-α-tubulin; GFP-3xAla myoII(HS1)::GFP-3xAla myoII, G418R:pBIG; RFP-α-tubulin, 
HygR:pDRH 

Myosin disassembly  
dynamics  

0/16 

ΔRLC: RLC-S13A; GFP-myoII ΔRLC: RLC-S13A, G418R; GFP-myoII, HygR: pDRH Role of myosin RLC 
phosphorylation 

2/19 

ΔRLC: RLC; GFP-myoII ΔRLC: RLC (wt), G418R; GFP-myoII, HygR: pDRH  7/11 

myoII: GFP-α-tubulin; Citrine-myoII myoII(HS1)::Cit-myoII, HygR:pDRH; GFP-α-tubulin, G418R:pDEX Role of myosin-II 
mechanochemistry and wild 
type 9-nm lever arm (wild 
type control) 

ΔP15 mm – 3/20 
ΔP40 mm – 10/21 
ΔP65 mm – 9/15 

myoII: GFP-α-tubulin; Citrine-S456L myoII myoII(HS1)::Cit-myoII (S456L), HygR:pDRH; GFP-α-tubulin, 
G418R:pDEX 

Role of myosin-II 
mechanochemistry 

ΔP15 mm – 1/10 
ΔP40 mm – 11/37 
ΔP65 mm – 9/17 

myoII: GFP-α-tubulin; Citrine-ΔBLCBS myoII myoII(HS1)::Cit-myoII (ΔBLCBS), HygR:pDRH; GFP-α-tubulin, 
G418R:pDEX 

2-nm long lever arm ΔP15 mm – 1/10 
ΔP40 mm – 8/34 
ΔP65 mm – 13/33 

myoII: GFP-α-tubulin; Citrine-2xELC myoII myoII(HS1)::Cit-myoII (2xELC), HygR:pDRH; GFP-α-tubulin, 
G418R:pDEX 

13-nm long lever arm ΔP15 mm – 8/18 
ΔP40 mm – 9/17 
ΔP65 mm – 10/15 

 
RacE: GFP-myoII; RFP-α-tubulin 

 
RacE24EH6::GFP-myoII G418R:pBIG; RFP-α-tubulin, HygR:pDRH 

 
RacE inhibition of 
mechanosensory response 

 
Mitotic – 2/5 
Interphase – 23/37 

RacE: GFP-myoII; mCherry-RacE RacE24EH6::GFP-myoII G418R:pBIG; mCherry-RacE, HygR, pDRH  Interphase – 2/20 

RacE: GFP-cortI RacE24EH6::GFP-cortI; G418R: pEXP4  Interphase – 15/37 

*Sup. Ref [9]. 
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