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Summary

Introduction: Contractile networks are fundamental to many
cellular functions, particularly cytokinesis and cell motility.
Contractile networks depend on myosin-II mechanochemistry
to generate sliding force on the actin polymers. However, to be
contractile, the networks must also be crosslinked by cross-
linking proteins, and to change the shape of the cell, the net-
work must be linked to the plasma membrane. Discerning
how this integrated network operates is essential for under-
standing cytokinesis contractility and shape control. Here,
we analyzed the cytoskeletal network that drives furrow
ingression in Dictyostelium.
Results: We establish that the actin polymers are assembled
into a meshwork and that myosin-II does not assemble into
a discrete ring in the Dictyostelium cleavage furrow of adher-
ent cells. We show that myosin-II generates regional mechan-
ics by increasing cleavage furrow stiffness and slows furrow
ingression during late cytokinesis as compared to myoII
nulls. Actin crosslinkers dynacortin and fimbrin similarly
slow furrow ingression and contribute to cell mechanics in
a myosin-II-dependent manner. By using FRAP, we show
that the actin crosslinkers have slower kinetics in the cleav-
age furrow cortex than in the pole, that their kinetics differ
between wild-type and myoII null cells, and that the protein
dynamics of each crosslinker correlate with its impact on cor-
tical mechanics.
Conclusions: These observations suggest that myosin-II
along with actin crosslinkers establish local cortical tension
and elasticity, allowing for contractility independent of a cir-
cumferential cytoskeletal array. Furthermore, myosin-II and
actin crosslinkers may influence each other as they modulate
the dynamics and mechanics of cell-shape change.
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Introduction

Cytokinesis is one of the most elegant cellular shape changes,
as a mother cell reforms into two daughter cells in as little as
5 min. Fundamentally mechanical, cytokinesis is driven by my-
osin-II and actin filaments, and signaling pathways emanating
from the mitotic spindle ultimately lead to their accumulation
along the equatorial region of the cell [1]. Myosin-II is a mecha-
noenzyme that uses the energy of ATP hydrolysis to move
actin filaments. The actin filaments in combination with cross-
linkers give cells their shape and mechanical properties. The
actin crosslinking proteins stabilize actin filament interactions
and tune the mechanical (rheological) properties of the actin
network. Thus, the actin crosslinkers define the passive mate-
rial properties of the network, whereas myosin-II uses energy
to modify this network, creating an active network [2, 3]. Be-
cause of their central importance to cell function, how actin
networks and myosin-II motors control the mechanical proper-
ties of cells is of considerable interest. Reconstitution systems
have been developed to explore how actin networks respond
to mechanical stress (force per area, pressure) and deforma-
tion (response of the network to mechanical stress) and how
myosin-II contributes to active and passive properties of these
actin networks [4–6]. However, it is unclear what the relevant
mechanical properties of dividing cells are, how they are gen-
erated molecularly, and how they contribute to cytokinesis
cell-shape change.

Classically, myosin-II is considered the primary force gener-
ator of cytokinesis, generating long-distance forces that de-
form the network. In this most general case, myosin-II pulls
on dynamic actin filaments that are either crosslinked to other
actin filaments or to the membrane, constricting the cleavage
furrow cortex. In many, but not all, cell-types, these actin net-
works are further organized into concentric antiparallel arrays,
allowing the myosin motors to pull the filaments, contracting
the membrane in a purse-string fashion. However, neither
Dictyostelium nor mammalian tissue culture cells require
myosin-II for mitosis-coupled cell division if the cells are adher-
ent, and recent studies have suggested other roles for myosin-
II such as in removing actin filaments from the equatorial region
during furrow constriction [7–9]. The actin crosslinking proteins
link the filaments together so that when myosin-II pulls against
the filament, tension on the filament can propagate into the
crosslinked network. Even with this basic framework, it is not
understood in any system how myosin-II and actin crosslinkers
interact to contract the network nor how these factors control
the dynamic features of furrow ingression. Also, because myo-
sin-II pulls on filaments bound by the crosslinkers, the cross-
linkers and myosin-II may modulate each other’s activities.
Finally, it is not understood how the cleavage furrows of wild-
type cells constrict in such a stereotypical fashion nor how
cleavage furrow ingression can occur without myosin-II.

To address these questions, we use the model system
Dictyostelium to study cytokinesis cell-shape change. This or-
ganism performs cytokinesis in a similar fashion to many types
of mammalian cell culture cells and is readily amenable to me-
chanical and genetic interaction studies. By using this system,
we have discovered and are studying a two-module system of
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equatorial (myosin-II and the actin crosslinker cortexillin) and
global/polar (RacE small GTPase and actin crosslinkers dyna-
cortin, coronin, enlazin, and fimbrin) proteins that form the
genetic basis of the shape control system that regulates cyto-
kinesis contractility (this paper) [10–13].

Here, we establish that the actin network in the contractile
zone of Dictyostelium cells is a meshwork, rather than the cir-
cumferential actin ring found in many cell types. We then set
out to uncover how actin and myosin-II interact to control
cytokinesis contractility, using a variety of mechanical and
dynamical approaches to study the contractile system. We
conclude that during Dictyostelium cytokinesis, myosin-II
generates a tension and stiffness differential between the fur-
row and polar cortex, that the dynamics of actin crosslinkers
vary spatially during cytokinesis, and that these crosslinker
dynamics are altered in myoII null cells. Because changes in
cell mechanics are the logical output of regulatory pathways
that provide the spatiotemporal control of cytokinesis, this
analysis offers an analytical framework for ultimately linking
these regulatory pathways to the mechanical changes that
drive cytokinesis shape change.

Results

The Actin Network Is a Meshwork in the Dictyostelium

Cleavage Furrow
By using transmission electron microscopy (Pt-TEM) and
scanning electron microscopy (Pt-SEM), we determined that
the actin polymer network is assembled into a meshwork in
the furrow region of dividing Dictyostelium cells (Figure 1A
and Figures S1A–S1C available online; see the Supplemental
Experimental Procedures). In images of wild-type (n = 73)
and myoII null (n = 6) dividing cells, we never observed a cir-
cumferential orientation of actin filaments at the equator; in-
stead the filaments were assembled into a meshwork, similar
to the cytoskeletons of interphase cells and polar cortices of
dividing cells (Figures S1A, S1D, and S1E). Throughout cytoki-
nesis the actin filament density at the furrow appeared to be
nearly constant by Pt-TEM. We confirmed this by quantitative
fluorescence imaging of rhodamine-phalloidin-stained cyto-
skeletons (Figure S1F). To complement the Pt-TEM and Pt-
SEM, we used 3D-EM tomography (3D-EM) of plastic sections
of plunge-frozen, freeze-substituted dividing cells, which also
revealed a highly disordered actin filament network near
the plasma membrane (Figure 1B, Figure S1G, and Movies
S1–S4; see also the Supplemental Experimental Procedures)
[14]. Because the IMOD software package used to build the
3D-EM tomograms allows one to recover the dimensions of
each structure drawn, we were able to analyze the actin fila-
ment length distribution, which gave an average filament
length of 94 6 57 nm (mean 6 SD; Figure S1H). This compares
well with the 200 nm mean length estimated previously for veg-
etative cells by using kinetic criteria [15]. From the filament
length and number, and the bridge volume, we determined
the concentration of F-actin in the late-stage intercellular
bridge (Figure S1H) to be 150 mM, which is reasonable consid-
ering the average polymeric actin concentration for vegetative
cells is 70 mM [16].

For independent approaches, we used 3D-deconvolution
(3D-decon) of rhodamine-phalloidin-stained fixed cells to
view the actin distribution and 3D-decon and total-internal re-
flection fluorescence (TIRF) imaging of live cells expressing
GFP-myosin-II to observe the myosin-II distribution (Figures
1C–1F). Neither actin nor myosin-II had a continuous ring
distribution at the equator by any method or at any stage of fur-
row ingression. Instead, the intensity of the actin and myosin-II
was greatest at the lateral cortex of the furrow. This is espe-
cially apparent in the TIRF images in which the disorganized
network of the myosin-II thick filaments had the highest con-
centration along the lateral edge of the cleavage furrow cortex.
In later stages of furrow thinning, the bridge lifts from the sur-
face and is not observable by TIRF microscopy. Birefringence
imaging of dividing Dictyostelium cells compressed by a sheet
of agarose had also revealed cytoskeletal filaments oriented
both perpendicularly and parallel to the long axis of the furrow
region [17]. Overall, there is no apparent uniform contractile
ring of actin or myosin-II in the equator of dividing Dictyostelium
cells grown on surfaces. Though many organisms use a con-
centric array of actin and myosin-II filaments (for example,
see [18–20],), some cell-types, such as mammalian NRK and
Swiss 3T3 cells, also have a more disordered actin and myo-
sin-II network [21, 22], similar to what we observe in
Dictyostelium.

More generally than a particular polymer organization, the
deformation of living actin networks depends on two key fea-
tures: actively generated forces from myosin-II and from actin
polymer dynamics coupled with cell traction and the resis-
tance to deformation (stiffness) from actin-crosslinking pro-
teins. Because the actin filaments are very short in Dictyoste-
lium, crosslinking proteins likely play an important role in
linking the filaments together to form an integrated network.
Cytokinesis cell-shape evolution may also depend on fluid
dynamical features (similar to Laplace-like pressures that orig-
inate from surface tension and which minimize the surface
area to volume ratios in liquids) from cortical tension through
the crosslinked actin network that can help promote furrow
ingression [13]. Therefore, to understand how the actin-
myosin-II network contracts during cytokinesis, we dissected
how myosin-II and actin crosslinkers control cytokinesis con-
tractility dynamics and mechanics.

Role of Myosin-II during Cytokinesis
To assess how myosin-II impacts the dynamics and mechanics
of cytokinesis contractility, we examined the morphology, dy-
namics, and mechanics of interphase and dividing cells with
altered myosin-II mechanochemistry (Table S1). We previously
predicted that wild-type furrowing occurred w50-fold more
slowly than expected based solely on fluid dynamical consider-
ations. Consistent with these predictions, we demonstrated
that by removing the global proteins RacE and dynacortin,
thereby reducing the proposed resistive stresses, the furrow-
thinning rates increased w30-fold compared to wild-type [13].
Additionally, a five-fold slower myosin (DBLCBS) that lacks
light chain binding sites could rescue myoII null cytokinesis
nearly to wild-type levels [23]. In this study, we examined cyto-
kinesis of myoII null cells complemented with 10-fold slower
motor, S456L, which moves slower due to a 3-fold longer
ADP-bound time and one-fourth productive step-size [24].
This S456L motor expresses at wild-type levels but only res-
cues the growth rates in suspension culture to one-third of
wild-type levels. However, the slower motor rescued the cyto-
kinesis morphology and furrowing dynamics to wild-type levels
on surfaces (Figure S2 and Movies S5–S7). Remarkably, the
cleavage furrows from cells expressing wild-type or 10-fold
slower myosin-IIs had indistinguishable furrow-thinning trajec-
tories, whereas the myoII null cleavage furrows contracted
faster late in furrow ingression than either of the strains with
myosin-II, indicating that myosin-II actually slows late stage
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Figure 1. Organization of Actin Filaments and Myosin-II in the Cleavage Furrow Cortex of Adherent Dictyostelium Cells

Actin filaments are organized into a meshwork, and actin and myosin-II are not enriched in a uniform ring as revealed by platinum-shadowed transmission

electron microscopy (Pt-TEM, [A]), 3D-electron tomography (3D-EM, [B]), 3D-deconvolution (3D-decon, [C–E]), and total internal reflection fluorescence

(TIRF; [F], lower images) microscopy.

(A) The actin network is observed at the furrow of a wild-type cell by Pt-TEM. Scale bars, 2 mm and 500 nm.

(B) Rotated 3D-EM images of a model of a 0.5 mm section (derived from combining two adjacent sections) of the lower surface of a cleavage furrow reveal

disordered actin filaments. Mitochondria are green, vesicles are cyan, plasma membrane is blue, and the actin filaments are yellow. The first two panels

show the furrow model viewed from top and bottom, respectively. The third panel is the furrow viewed down the long axis of the furrow. Scale bar,

2 mm, applies to all panels. The Z series of the raw EM data can be found in Movie S1. The corresponding movie of the model can be found at Movie S2.

(C) Nonuniform cleavage furrow cortical actin. TRITC-phalloidin staining of filamentous actin in a wild-type cell. Inset shows a cross-section of the furrow

actin where the actin is enriched along the lateral surface. Scale bar, 10 mm applies to all images. Equatorial localization of GFP-myosin-II and binucleation

(DAPI) confirms cell was undergoing cytokinesis prior to fixation.

(D and E) Noncircumferential distribution of myosin-II thick filaments. Wild-type cells expressing GFP-tubulin and GFP-myosin-II reveal that, like actin,

myosin-II does not form a continuous ring at the cleavage furrow. (D) Early-stage dividing cell. (E) Late-stage dividing cell. The ‘‘C-S’’ images show the

cross-sectional fluorescence intensities of the furrow.

(F) Epifluorescence and TIRF images indicate that myosin-II is not circumferentially oriented at the basal region of the furrow. Note that at later stages of

cytokinesis, the furrow lifts from the surface.
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Figure 2. Wild-Type Myosin-II Mechanochemistry Is Required for Wild-Type Interphase Mechanics, but Not Cytokinesis Mechanics and Kinetics

(A) Comparison of furrow-thinning trajectories in cells expressing wild-type myosin-II or myosin-II S456L to myoII null cells shows that S456L is able to fully

restore the uniform furrow-thinning kinetics of wild-type dividing cells. Note that myoII null cells have a faster furrow-thinning rate at later stages of division.

(B–D) Expression of myosin-II S456L in myoII cells does not fully recover wild-type cellular mechanics during interphase. (B) MyoII cells have lower visco-

elasticity (jG*j) than wild-type cells as measured by LTM. (C and D) MyoII cells are more deformable (C) and have a lower effective cortical tension (D),

as measured by MPA. The S456L cells have cortical mechanics similar to wild-type cells at longer time-scales (10 rad/s, [B]) and smaller deformations (lower

Lp/Rp, [C]) but are more like myoII cells at shorter time-scales (>102 rad/s, [B]) and larger deformations (larger Lp/Rp, [C]).

(E) Representative micrographs showing cells aspirated at metaphase and during cytokinesis at the pole and furrow. For the polar cortex, we aspirated at

angles ranging from parallel to perpendicular to the spindle axis with no detectable differences in the level of deformability.

(F) The degree of deformability of wild-type interphase and metaphase cells was not significantly different. During anaphase, the furrow was slightly less

deformable than during metaphase, whereas the pole was more deformable than the furrow or metaphase cortices.

(G) Conversely, the furrow and pole of myoII cells were not significantly different from each other and both regions were much more deformable than the

polar region of wild-type cells.

(H) S456L reduces the level of deformability of the furrow and polar regions to wild-type levels. Error bars indicate standard error of the mean. Sample sizes

for (D) are shown on the histograms. Samples sizes for (A) are provided in Table S2; sample sizes for (B) are shown in the histograms in Figure S3, and the

calculated E values and sample sizes for (C) and (F)–(H) are provided in Table S3.
furrow ingression (Figure 2A and Table S2). Thus, the velocity of
the motor is clearly not rate limiting, and other processes must
govern the furrow ingression rate (see below).
To determine how myosin-II contributes to cell deformability
(a stiffer material is less deformable), we used two meth-
ods: laser-tracking microrheology (LTM) and micropipette
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aspiration (MPA). These methods draw upon very different
principles and assumptions, but used in combination, they
allow for crosscomparison and for different features of cortex
mechanics to be assessed. In LTM, the surface-attached bead
particles serve as noninvasive reporters of cortical stiffness
(measured as complex viscoelastic moduli (jG*j); see the Ex-
perimental Procedures), which is important because myosin-
II has load-dependent actin binding that can alter the enzyme’s
duty ratio [25–27]. From LTM, phase-angle information also
can be extracted to relate the solid- to liquid-like properties
of the cortex (see the Experimental Procedures). However,
slow Brownian motions (on timescales >200 ms) of particles
are obscured by active force generation in the cell, limiting
LTM’s usefulness for measuring viscoelastic moduli to time
scales %100 ms [3]. Furthermore, it has not been feasible to
apply LTM to dividing cells in a statistically rigorous manner.
In contrast, MPA measures mechanics on longer time scales
but requires relatively large mechanical strains for the mea-
surements to be made. MPA offers the ability to position
micropipettes so that spatial mechanics can be assessed for
cytokinetic cells (Figure 2E). On the longest 100 ms time scale
(10 rad/s) measured by LTM, the interphase cortex of wild-type
cells have a viscoelastic modulus (jG*j) of 0.1 nN/mm2 (100 Pa),
which from the power-law behavior might extrapolate to
w0.07 nN/mm2 at 1 s (Figure 2B). Because the beads are sur-
face attached and may not be fully immersed in the network,
this could be an underestimation of the viscoelastic modulus
of the cortex. Yet, these LTM values agree well with the elastic
modulus (E) of 0.1 nN/mm2 obtained from the DP versus Lp/Rp

relationship measured by MPA (Figure 2C and Table S3; also
see the Experimental Procedures). When the cells are more
spherical, as during interphase, MPA can also be used in a dif-
ferent way to measure an effective cortical tension (Teff) (mea-
sured at Lp/Rp = 1), which was 1 nN/mm for wild-type cells
(Figure 2D; see the Supplemental Experimental Procedures)
[10]. Thus, the combination of these methods allows three pa-
rameters to be assessed: a frequency-dependent viscoelastic
modulus with its phase angle (LTM), an effective cortical ten-
sion (MPA), and an elastic modulus (MPA). However, for
some of the different genetic mutants and in some of the differ-
ent cell cycle phases, the plots of DP versus Lp/Rp have similar
slopes but are offset (for example, wild-type versus myoII in
Figure 2C). The offsets are likely due to nonlinearities of the
cells’ responses to small versus large deformations. As a re-
sult, we primarily interpret these data in terms of how the cell
deforms in response to applied pressure (greater Lp/Rp at
a given pressure implies greater deformability). Nevertheless,
the calculated elastic moduli for each case are presented in
Table S3.

We first analyzed interphase wild-type, myoII null, and
S456L cells by using LTM and MPA (Figures 2B–2D and
Figure S3). By LTM, the myoII null cells had slightly lower vis-
coelastic moduli than the wild-type cells across all frequencies
whereas the S456L mutant cells were lower than wild-type at
high frequencies and comparable to wild-type at low frequen-
cies (Figure 2B and Figure S3). In the frequency range of the
LTM measurements, all strains measured here were more
solid-like (phase angle values at 100 rad/s were 13�–15� for
all strains except for S456L, which had a phase angle of 11�;
see the Experimental Procedures). By MPA, the myoII nulls
were more deformable than the wild-type cells and again the
S456L mutant was intermediate between the two strains
(Figure 2C and Table S3). The effective cortical tension was
w20% reduced for myoII null (which is similar to the 30%
reduction observed by needle poking [28]) and S456L cells
when compared to wild-type control cells (Figure 2D). Thus,
consistent with its significant (10-fold) motility defect, S456L
only partially rescues the myoII null interphase mechanical
defect.

During mitosis (Figures 2E and 2F; Table S3), wild-type
metaphase cells were indistinguishable from interphase cells.
However, as predicted by classical models, the polar cortex
became much more deformable (polar relaxation [29, 30])
whereas the equator stiffened slightly (equatorial stimulation
[31, 32]) during anaphase as compared to interphase cells
(Figure 2F). In myoII null cells, the equatorial and polar cortices
were not significantly different from each other but were signif-
icantly more deformable overall than wild-type cells (Figure 2G
and Table S3). Perhaps explaining the similarity between wild-
type and S456L furrowing dynamics, S456L rescued the de-
formability of the equatorial and polar cortices to wild-type
levels (Figure 2H and Table S3). Therefore, the slowly decreas-
ing furrow diameters of wild-type and S456L cells correlate
with decreased deformability of the cleavage furrow cortex
(Figure 2A versus Figures 2F–2H). S456L may provide more
wild-type function in the context of the cleavage furrow cortex
where myosin-II becomes enriched and where the cortex is ac-
tively deforming (straining), which may put the myosin-II under
greater mechanical load. It should be noted that we recently
documented mechanosensory responses in dividing cells,
which occur on timescales of w40 s after mechanical pertur-
bation [33]. For the analysis presented here, we measured all
genotypes within w20 s of manipulation, and we also followed
GFP-myosin-II in the rescued myoII null (myoII: GFPmyoII)
cells to make sure that we did not trigger mechanosensory re-
sponses in the timeframe of the experiment. Therefore, these
data reflect the level of deformability of the cortex, not mecha-
nosensory responses.

Complex Interaction of Myosin-II and Crosslinkers
in the Actin Network

To prevent nonproductive filament sliding, myosin-II requires
crosslinking proteins to couple short filaments to each other
so that the network deforms as a whole. Therefore, the actin
crosslinkers represent the other half of the contractile system.
Two classes of crosslinkers (global and equatorial) have been
uncovered through genetic interaction screens [10, 11]. Cor-
texillin-I is an equatorially enriched actin crosslinker with
membrane binding sites that are involved in Dictyostelium
cytokinesis contractility and cortical mechanics [25, 34]. Glob-
ally distributed dynacortin has emerged as an important com-
ponent that contributes to cytokinesis furrowing dynamics by
acting as a brake to slow furrow ingression [11, 13]. Because
dynacortin overexpression produces enlarged, multinucleated
cells (Figure S4A) [11], we used this phenotype to screen for
other factors that may act in the global pathway. We ex-
pressed a cDNA library in Dictyostelium cells and isolated
the actin crosslinker fimbrin as a factor that produced en-
larged, multinucleated cells that saturated at lower cell densi-
ties when overexpressed (Figure S4A–S4C). Similar to dyna-
cortin, fimbrin is a globally distributed actin crosslinking and
bundling protein (Figure S4D) [11]. Both dynacortin and fimbrin
have similar apparent affinities for actin (Kd,w1 mM) and cellu-
lar concentrations (w1 mM), and increase cortical tension
when overexpressed (Figure S5) [25, 35, 36].

Using LTM and MPA, we measured and compared the fre-
quency spectra of viscoelastic moduli and cortical tensions
of wild-type and myoII null cells devoid of these crosslinkers.
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Interphase cells lacking myosin-II or dynacortin have lower
viscoelastic moduli and cortical tension than control cells (Fig-
ures 3A and 3B and Figure S3). In contrast, fimbrin mutant cells
have lower viscoelastic moduli than wild-type cells when mea-
sured by LTM, which measures fast time scales (ST, p < 0.02 at
10 and 100 rad/s; Figure 3C and Figure S3), but have similar
cortical tension, which is measured on longer time-scales, to
wild-type cells (ST, p = 0.5; Figure 3D). However, removal of
fimbrin from myoII null cells did lead to a significant reduction
in cortical tension, suggesting that myosin-II might modulate
fimbrin’s contribution to long time scale cortical mechanics
(MPA) (ST, p = 0.002) (Figure 3D). Similarly, the differing contri-
butions of dynacortin and fimbrin to cellular-scale mechanics
may be observed in the furrow-thinning rates: myoII null cells
lacking dynacortin thin faster than myoII null cells lacking fim-
brin (Figure 3E and Table S2).

The mechanical properties of crosslinked actin networks are
derived from the complex organization of the actin polymers
and the kinetic properties of the crosslinking proteins [4, 37].
The organizational features lead to the structures and level
of filament entanglements that define the mechanics of the
network. The crosslinking proteins organize the structures
and stabilize the entanglements: slower (longer lived) cross-
linkers maintain stable associations between the polymers
whereas faster crosslinkers release quickly, allowing the fila-
ments to slide past one another (see the Discussion section).
At the whole-cell level, discerning quantitatively the subtle dif-
ferences in network organization is not yet feasible. However,
we could begin to discern some of the kinetic features of the
crosslinkers in wild-type and myoII null cells by using fluores-
cence recovery after photobleaching (FRAP) analysis.

First, we measured the dynamics of the crosslinkers and my-
osin-II in wild-type interphase cells. The fluorescence recovery
rate of GFP-fimbrin (trec = 0.26 s) was faster than the rate for
GFP-dynacortin (trec = 0.45 s; MW, p = 1x1025). Overall, both
were slower than soluble GFP in the cortical region of the
cell (Table 1 and Figure S6). GFP-fimbrin and GFP-dynacortin
also showed similar immobile fractions (Table 1 and Figure S7).
In contrast, cortexillin-I (trec = 3.3 s) and myosin-II (trec = 8–10 s)
had similar immobile fractions but had significantly longer
median recovery times than either fimbrin or dynacortin
(Table 1 and Figures S6 and S7). Thus, a simple paradigm of
fast global proteins and slow equatorial proteins is suggested
from the interphase protein dynamics.

Next, we compared the dynamics of these crosslinkers in
interphase wild-type and myoII null cells. Because fimbrin
had a detectable impact on the cortical tension of myoII null
cells, but not wild-type cells, whereas dynacortin had its great-
est impact on the viscoelastic moduli and cortical tension of
wild-type cells, we wondered if these two crosslinkers would
have differential dynamics in wild-type and myoII null cells.
Indeed, fimbrin’s trec was faster in wild-type cells (0.26 s)
than in myoII null cells (0.68 s) (MW, p = 1 3 1027; Table 1
and Figure S6), correlating with its impact on myoII null cortical
tension. However, dynacortin was slower in wild-type cells
(0.45 s) than in myoII null cells (0.29 s) (MW, p = 0.005). In con-
trast, cortexillin-I showed only a weakly significant increase in
trec (MW: p = 0.04) but a larger immobile fraction without
myosin-II (MW, p = 0.006; Table 1; and Figures S6 and S7).

Finally, we compared the dynamics of these proteins during
wild-type cytokinesis. The trec of both GFP-fimbrin and GFP-
dynacortin increased at the equatorial region to 0.58 s (MW,
p = 0.006) and 0.98 s (MW, p = 0.005), respectively, whereas
the recovery times at the polar cortices remained at
interphase levels (Table 1 and Figure S6). GFP-cortexillin-I
had a recovery time that was similar between the equator
(trec = 5.4 s) and pole (trec = 4.5 s) (MW, p = 0.7) (Table 1 and
Figure S6), whereas its immobile fraction increased during
cytokinesis (MW, p = 0.038) (Table 1 and Figure S7). Overall,
each of the crosslinkers in the equatorial region has a longer
lifetime, whereas those in the polar region have shorter life-
times. In sum, for these proteins, a simple paradigm of slow
equatorial and fast global crosslinking proteins appears to
control cytokinesis shape change.

Figure 3. Dynacortin Has a Greater Contribution to Cortical Mechanics and

Furrow-Thinning Kinetics Compared to Fimbrin

(A) Removal of dynacortin and/or myosin-II reduces the viscoelasticity (jG*j)
of interphase cells as measured by LTM.

(B) Likewise, myosin-II and dynacortin contribute to the effective tension

(Teff) as measured by MPA.

(C) Removal of fimbrin reduces the viscoelasticity (jG*j) of interphase cells

as measured by LTM.

(D) In wild-type cells, fimbrin does not contribute to cortical tension as mea-

sured by MPA, but it does contribute significantly in a myoII null back-

ground. Both the fimbrin knockout strain (fimbrin) and fimbrin RNAi (fimhp)

strains have the same effects. The control for fimbrin is the parental strain

and the control cells for the fimhp-expressing cells are wild-type cells car-

rying the empty vector.

(E) In a myoII null background in which fimbrin has a significant mechanical

contribution on longer time-scales (MPA), reduction of fimbrin or dynacortin

increases the rate of furrow ingression compared to control cytokinesis.

However, dynacortin has a greater contribution to the furrow-thinning kinet-

ics than fimbrin has. Error bars represent the standard error of the mean.
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Table 1. Median Recovery Times, trec, and Median Immobile Fractions, Fi, for Global Class and Equatorial Class Proteins in Interphase and during

Cytokinesis: FRAP Analysis

trec, Fi (n)

Interphase Cytokinesis

Wild-type myoII Equator Pole

Global Class

GFP-dynacortin 0.45 s, 26% (24) 0.29 s, 40% (30) 0.98 s, 31% (21) 0.51 s, 38% (19)

GFP-fimbrin 0.26 s, 33% (30) 0.68 s, 41% (46) 0.58 s, 2.9% (13) 0.31 s, 21% (16)

Equatorial Class

GFP-cortexillin-I 3.3 s, 32% (33) 5.4 s, 49% (42) 5.4 s, 57% (14) 4.5 s, 53% (13)

GFP-myosin-II 11 s* 7.6 s, 24% (8) 10 s*

Soluble

GFP (cortex) 0.15 s, 13% (14)

*Values from [48]. Mean 6 SEM are shown on the histograms in Figures S6 and S7.
Discussion

Because cytokinesis is an inherently mechanical process, me-
chanical studies have played an important role in cytokinesis
research for many decades (for example, see [29, 32, 38,
39]). From these studies, a diversity of mechanical scenarios
for cytokinesis contractility has been observed across a wide
range of organisms. However, more fundamentally, the con-
tractility of a cytoskeletal network results from the integrated
behavior of actin crosslinkers and myosin-II. Our data demon-
strate that myosin-II and global and equatorial actin crosslink-
ing control spatial mechanics in the absence of a clear concen-
tric ring of actin polymers (Figure 4). In dividing wild-type cells,
the polar cortex is more deformable than the equatorial cortex,
and the globally distributed actin crosslinkers have much
shorter recovery times than the equatorial crosslinkers. The
correlation between crosslinker lifetimes and cortex deform-
ability suggests that myosin-II and equatorial crosslinkers pri-
marily increase the local cortical tension and elasticity in the
furrow region. This increased equatorial cortical tension may
generate surface stresses that lead to Laplace-like pressures,
which help push cytoplasm out of the furrow region. The
Laplace-like pressures may originate from stresses in the actin
network that are actively generated by pulling forces from my-
osin-II and/or from pushing forces from actin assembly at the
poles. Because the cells are highly elastic (phase angle w15�

at 100 rad/s), mechanical stresses may propagate through
the crosslinked network. However, the cell cortex and cyto-
plasm have enough viscous character that as the pole-to-
pole length increases and the furrow radius decreases, the
surface stresses squeeze cytoplasm from the midzone, driving
furrow ingression in a manner analogous to how a fluid droplet
breaks up. Wild-type furrows also may constrict more slowly
than myoII null furrows during late cytokinesis stages because
of their increased elasticity, which may lead to a longer elastic
relaxation time (previously estimated to be w30 s for wild-type
cells [13]). In contrast, the higher level of deformability of divid-
ing myoII null cells may facilitate their ability to divide with the
aid of traction. In the myoII nulls, force generation from actin
assembly at the poles likely allows the emerging daughter cells
to crawl apart enough to form the appropriate geometry for
equatorial cortical stresses to promote the Laplace-like pres-
sures in the furrow region [10, 13, 40, 41]. Importantly, myoII
null cells do not elongate enough to simply crawl apart; rather,
cytoplasm flows from the midzone and the furrowing dynam-
ics of the myoII null cells can be modeled as a surface
tension-driven process, further supporting a role for the
Laplace-like pressures [13].

Although many types of cells perform cytokinesis through
the constriction of a purse-string of actin and myosin-II
Figure 4. Model for Cytokinesis Cell-Shape Change through the Con-

traction of an Actin Meshwork

Here, myosin-II and actin crosslinkers interact to control furrow ingres-

sion dynamics, equatorial and polar cortical tension, and crosslinker

lifetimes. The equatorial cortex is principally controlled by myosin-II

and cortexillin, whereas the global/polar cortex is modulated by dyna-

cortin, fimbrin, and myosin-II. The local increased cortical tension

(Scf > Scp) by myosin-II generates equatorial stresses (orange arrows)

that help squeeze cytoplasm from the furrow region, whereas the glob-

ally distributed crosslinkers generate resistive stresses (green arrows)

that slow furrow ingression (this paper and [13]). The equatorial cross-

linker cortexillin-I and equatorial populations of fimbrin and dynacortin

(represented as red ellipses) persist much longer at the cortex, perhaps

contributing to the increased tension in this region. Conversely, polar

actin crosslinkers (fimbrin and dynacortin represented as blue ellipses)

release from the network on fast time scales, making the global cortex

more deformable. This system of myosin-II and equatorial and global

actin crosslinkers generates the stress differential that drives and con-

trols the dynamics of cytokinesis cell-shape change.
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filaments, mammalian NRK cells, Swiss 3T3 cells, and Dictyos-
telium cells do not have such a highly organized structure of
concentric actin filaments (this paper) [21, 22]. Despite these
structural variations, how myosin-II, actin polymers, and actin
crosslinkers interact is likely to be a fundamental principle,
governing cytokinesis contractility dynamics. Indeed, a-acti-
nin functions in mammalian NRK cells analogously to the actin
crosslinkers studied here: NRK cells devoid of a-actinin have
accelerated furrow ingression, similar to dynacortin and
fimbrin mutants, and myosin-II inhibition leads to slower a-
actinin dynamics, similar to fimbrin [42].

To deform the cytoskeletal network, myosin-II motor pro-
teins must pull on actin filaments that are crosslinked by
crosslinking proteins, and without crosslinkers, myosin-II
would simply slide filaments past one another without de-
forming the network [43]. Therefore, interactions between
the crosslinkers and motors are an essential feature of a con-
tractile system, and the crosslinkers and motors are poised to
influence each others’ activities through crosstalk across the
filaments. This crosstalk may occur principally in three
ways: (1) through structural organization of the filament net-
work, (2) through binding interactions (allostery) through the
actin filament, and/or (3) through tension effects across the fil-
aments. Structurally, the crosslinker or myosin-II may orga-
nize filaments into network structures that affect the binding
of the other. By binding, the motor or crosslinker could alter
the conformation of the actin filament so that it modulates
the binding of the other. Finally, because myosin-II pulls
on the actin filament, tension through the filament may stabi-
lize or destabilize the binding of the crosslinker. Whether
tension directly influences the crosslinker binding dynamics,
slow crosslinkers would not only make the network less de-
formable (more elastic, increased stiffness) but would provide
the mechanical load needed for myosin-II to generate tension
on the network.

Cortexillin-I appears to have an important role in assisting
myosin-II in tension generation. Cortexillin-I is enriched in
the furrow cortex and with its slow recovery dynamics (w10-
fold slower than those of dynacortin and fimbrin), it is likely
to be the major crosslinker that myosin-II pulls against to gen-
erate increased cortical tension and elasticity in the furrow re-
gion. From other work, cortexillin-I and myosin-II relocate to
sites of cell deformation in dividing cells as part of a mechano-
sensory cell-shape control system, whereas dynacortin and
fimbrin do not [33]. Cortexillin-I mutants also have a similar re-
duction in cortical stiffness and have a slower initial phase of
furrow ingression similar to myoII null cells [10, 13, 25]. All of
these observations together identify cortexillin-I and myosin-
II as core components of a contractile module that controls
cytokinesis cell-shape change.

In contrast, fimbrin and dynacortin might antagonize myo-
sin-II. Both proteins provide a braking function, slowing furrow
ingression kinetics, and both have fast (subsecond) recovery
dynamics in the cortex. In vitro, myosin-II can extract actin fil-
aments from fimbrin crosslinked networks, suggesting that
myosin-II pulling might release fimbrin crosslinking [36]. Simi-
larly, in our study, removal of fimbrin from a myoII null, but not
from wild-type, led to a significant reduction in cortical tension,
suggesting that myosin-II may antagonize fimbrin’s crosslink-
ing activity. Alternatively, dynacortin has slower recovery dy-
namics in wild-type cells than in myoII null cells and has a big-
ger impact on the viscoelastic moduli and cortical tension of
wild-type cells than myoII null cells. Precedence exists for
crosslinkers to have slower dynamics in response to myosin-
II-generated forces, as has been suggested for zyxin at the
focal adhesion [44].

Overall, complex interactions between actin-associated
proteins control cytokinesis dynamics and mechanics, and
to decipher this complexity requires quantitative analysis of
single and double mutant combinations of cytoskeletal and
regulatory factors. As judged from latrunculin-treated cells,
the cortical cytoskeleton contributes w90% of the cortical
stiffness [25]; yet myosin-II and each individual crosslinking
protein only contributes w20%–30% to cortical tension (this
paper) [10]. However, single versus double mutant combina-
tions of myosin-II or cortexillin-I with global crosslinkers do
not necessarily lead to additive reductions in cortical stiffness
and tension (this paper) [25]. Therefore, the molecular determi-
nants of cortical mechanics interact in a highly complex
fashion, leading to nonlinear effects. Although one can only
speculate as to how many crosslinkers have to be removed
to reduce tension to the latrunculin level, the small GTPase
RacE may provide part of the clue. RacE nulls have a 70%–
80% reduction in cortical tension [45], and RacE is known to
be required for the accumulation of crosslinkers dynacortin
and coronin, but not fimbrin or enlazin, at the cortex [11].
Thus, cytokinesis shape change is the result of a complex sys-
tem of interacting regulatory and cytoskeletal proteins that
control cell mechanics.

In sum, with our current data sets (this paper) [10, 13, 25], we
are building an analytical framework that relates contractility
dynamics, cell mechanics, and crosslinker recovery dynamics.
This framework provides a number of quantitative outputs that
can be assessed to see how cytokinesis regulatory pathways
modulate cytokinesis cell-shape change. Ultimately, it will be
important to develop the computational tools to test this ana-
lytical framework quantitatively. Additionally, whole-cell mea-
surements always have the caveat that unknown proteins may
impact the system. Therefore, the development of reconstitu-
tion systems that allow the interface between mechanical
strain, crosslinked actin network structure, and crosslinker dy-
namics to be directly analyzed and contrasted with these in
vivo data will be essential.

Experimental Procedures

Details of the cell strains, genetic screening, analysis of growth rates,

molecular biology techniques, Pt-TEM, 3D-EM tomography, 3D-deconvolu-

tion and TIRF fluorescence imaging, and FRAP and FLIP analyses can be

found online in the Supplemental Data.

Furrow-Thinning Dynamics

Time-lapse DIC images were taken at 2 s intervals with a 403 (N.A. 1.3)

objective with 1.63 optivar. Minimal furrow diameters and lengths were

measured with 4 s time resolution, and furrow-thinning dynamics (FTDs)

were analyzed by using a previously described rescaling strategy [13].

Laser-Tracking Microrheology

Laser-tracking microrheology (LTM) of interphase cells was performed by

using previously published methods [25]. In short, beads were tracked for

11 1 s iterations. The generalized Stokes-Einstein relationship is used to

convert bead fluctuations into cell viscoelasticity spectra:

jG*j= 2KBT

6prhmsdi ; (1)

where r equals the bead radius, which is 0.35 mm. jG*j is a complex modulus

that is a combination of elastic (storage) and viscous (loss) moduli so that

G* = G0 + iG00. The phase angle (d) relates these two components so that

G0 = jG*jcosd and G00 = jG*jsind. Lognormal means and standard error of

the means of jG*j values are presented after transformation back into real

space values.
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Micropipette Aspiration

Micropipette aspiration (MPA) of logarithmically growing cells was per-

formed by using glass pipettes with inner radii of 2.5–5 mm. DIC images

were taken every 5 s with a 603 (NA 1.45) objective with 1.63 optivar.

With MPA, different cell mechanical models such as solid-body deformation

and the cortical shell-liquid core are used to convert the pressure-deforma-

tion relationships into mechanical parameters [46, 47]. The effective tension

of interphase cells was measured at a pressure that induced a hemispherical

deformation (Lp/Rp = 1) of the cell into the pipette. The tension was calcu-

lated using the Law of Laplace [47]:

DP = 2Teff

�
1

Rp

2
1

Rc

�
: (2)

To determine the relative stiffness of mitotic cells during metaphase and

at the equator and poles during anaphase, pressure jumps using MPA were

applied to the cells. The measurements were taken within 20 s of aspiration,

and GFP-myosin-II was monitored to ensure that pressures were recorded

prior to the mechanosensory response [33]. From the slope (m) of the DP

versus Lp/Rp curves, the elastic modulus E could be estimated using the

following equation:

E =
3m

2pf
; (3)

where f = 2.1 [46].

Statistical Analyses

For each comparison, either a Mann-Whitney (MW) or two-tailed Student’s t

test (ST) was performed, and each p value has either MW or ST to designate

the test used.

Supplemental Data

Supplemental Experimental Procedures, seven figures, and three tables are

available at http://www.current-biology.com/cgi/content/full/18/7/471/

DC1/.
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Cell Culture

Dictyostelium discoideum strains are presented in Table S1. Constructs

were transformed into either the wild-type strain (Ax2 or Ax3:Rep orf+;

HS1000) [S1], the myosin-II heavy chain null (myoII) strain (mhcA; HS1)

[S2], or the fimbrin null strain (HG1629) and selected in 1.43 HL5 containing

8% FM (Enriched HL-5) and 15–30 mg/ml G418. Tubulin was observed by

using pDXA-Bl: RFP-tubulin or pDRH:GFP- or RFP-tubulin [S3].

To construct the fimbrin RNAi hairpin plasmid, unique regions of the gene

that were not homologous to other genes were identified. The stem of the

hairpin was constructed by cloning the antisense and sense sequences of

the unique region in series. A loop region of w500 nucleotides from the

antisense sequence lies between the antisense and sense stem regions.

Sequences that contributed to the stem region of the RNAi hairpin were

blasted against the Dictybase, and it was determined that there are no

stretches with R16 out of 20 base pair identities to genes other than those

of interest, thus eliminating the possibility of nonspecific RNAi.

Altered fimbrin and myosin-II expression levels were determined by west-

ern analysis using a monoclonal anti-fimbrin 1� antibody [S4] or anti-myo-

sin-II heavy chain 1� antibody, and a goat anti-mouse 2� antibody (Sigma).

The protein concentrations were determined by Bradford (BioRad). Dilu-

tions series of total protein in control and fimhp strains were used to deter-

mine the fold reduction in fimbrin levels. Equal loading was confirmed using

a polyclonal anti-dynacortin 1� antibody [S5] and a donkey anti-rabbit 2�

antibody.

Genetic Screen

A D. discoideum cDNA library prepared from vegetative cells was trans-

formed into HS1000 cells as described previously [S5]. 37,000 transform-

ants were screened visually for colonies with a large proportion of enlarged

cells. Mutants were cloned and genes identified and recapitulated as de-

scribed previously [S5].

Growth in Suspension

Log phase wt control and wt: fimOE strains were grown in suspension cul-

ture at an initial concentration of w2 3 105 cells/ml. Cell concentrations

were determined using a hemacytometer.

Transmission and Scanning Electron Microscopy

Transmission electron microscopy (Pt-TEM) and scanning electron micros-

copy (Pt-SEM) were performed on wild-type and myoII mutant cells under-

going cytokinesis, using methods adapted from [S6]. Wild-type (Ax3:Rep

orf+:: pLD1A15SN) or myoII mutant cells were plated overnight on circular

coverslips in enriched HL5 media and then fixed. After critical point drying,

samples were platinum- or platinum/palladium-shadowed by using a

Denton Vacuum DV-502A evaporator. Platinum shadowed coverslips were

imaged by using a Zeiss LEO field emission scanning electron microscope

operating at 1 keV. For Pt-TEM, platinum replicas of cells were transferred

to parlodion-coated 200 mesh copper EM grids and then imaged with an

AMT 1k 3 1k CCD camera. Images were inverted to highlight actin filaments.

Pt-TEM micrographs of cells showing the distinctive shape of cells undergo-

ing cytokinesis were obtained using a Hitachi 7600 transmission electron

microscope, operating at 80 keV.

3D Electron Tomography

To exclude the possibility that detergent-solubilization of the cell membrane

disrupted furrow actin organization, 3D electron tomography was per-

formed. Cells were grown on formvar-coated gold EM grids for 6–18 hr. Cells

were rinsed in 13 phosphate buffered saline (PBS), blotted, and plunged

into a reservoir of liquid ethane that was cooled to 2180�C in a bath of liquid

nitrogen. Frozen grids with cells were transferred to vials containing frozen

freeze substitution fluid (1% OsO4, 0.1% uranyl acetate in acetone).
Samples were warmed to 29�C and substituted at this temperature for

3 days, warmed to 0�C gradually over 24 hr, rinsed with acetone, and em-

bedded in Epox-Araldite. Sections (300 nm) were cut by using an ultramicro-

tome (Leica Microsystems, Wein, Austria), collected on formvar-coated

copper slot grids and post-stained with uranyl acetate and Reynold’s lead

citrate.

Serial tilted images were collected at 1� increments (660�) around an

orthogonal axis by using the program SerialEM [S7] on a Tecnai F30 electron

microscope (FEI, Eindhoven, Netherlands) by using a Gatan CCD camera

(Pleasanton, CA). The 3D density distributions (tomograms) calculated

from each set of aligned tilts were aligned with each other and combined

to produce a single, dual-axis 3D reconstruction. Structures within the vol-

ume of the tomographic reconstruction were modeled by using the IMOD

software package [S8].

3D Deconvolution and Total Internal Reflection Fluorescence

To determine the organization of GFP-myosin-II and F-actin at the furrow,

myoII null cells expressing GFP-myosin-II and GFP-tubulin were imaged.

Cells were grown on coverslips for at least 1 hr prior to live-cell imaging

and overnight before 220�C acetone fixation for actin staining. Cells were

fixed for 3 min and then blocked in 13 PBT (13 PBS, 0.05% Triton X-100,

and 0.5% BSA). After blocking, cells were stained for 3 hr in 40 nM TRITC-

phalloidin + 1 mg/ml DAPI in 13 PBT. After extensive washing in 13 PBT

and 13 PBS, coverslips were mounted in 90% glycerol 13 PBS. For live-

cell fluorescence imaging, the media was replaced with MES buffer (50

mM MES [pH 6.8], 2 mM MgCl2, 0.2 mM CaCl2) to reduce auto-fluorescence.

Z section micrographs throughout the cell volume were acquired by using

an Olympus microscope and 603 (NA 1.45) objective with 1.63 optivar. De-

convolution of GFP-myosin-II and TRITC-phalloidin stained F-actin during

cytokinesis was performed using Metamorph software (Molecular Devices).

To quantify the concentration of F-actin at the furrow during different

phases of cytokinesis, images were background subtracted by using a

region outside of the cell, and then the mean fluorescence intensity of the

furrow cortices of deconvolved TRITC-phalloidin stained cells were normal-

ized to the mean fluorescence intensity of the cytoplasm. The section of the

deconvolved images with the largest width was used for measurement of

fluorescence intensities by using ImageJ software (http://rsb.info.nih.gov/

ij/). Relative fluorescence intensities were calculated using Microsoft Excel.

To plot the actin concentrations, the relative furrow diameter was calculated

by dividing each cell’s furrow width by the Dx of myoII:GFPmyoII cells

(2.5 mm; Table S2) [S9]. To observe the organization of myosin-II thick fila-

ments during cytokinesis, time-lapse total internal reflection fluorescence

(TIRF) microscopy was performed using a 603 (NA 1.45) objective and a

488 nm laser.

Fluorescence Recovery after Photobleaching

To determine if GFP-tagging affected dynacortin or fimbrin function, we

used MPA to compare the effective tension (Teff) of wild-type and myoII mu-

tant control and fimbrin or dynacortin overexpressing cells. In these MPA

experiments, the wild-type control for Ax2:: pLD1A15SN:GFP-dynacortin

is Ax2-214 and the wild-type control for Ax3 Rep:orf+:: pLD1A15SN: fimbrin

is Ax3 Rep:orf+:: pLD1A15SN. Like the nontagged versions, GFP-dynacortin

and GFP-fimbrin overexpression increased the Teff of cells over control

(Figure S5) [S10].

For fluorescence recovery after photobleaching (FRAP) experiments, we

used a Zeiss Meta confocal with a 633 objective and a 488 nm laser. Non-

bleaching exposures of cells were performed at 10%–15% laser power. The

interval between exposures was 200 ms for GFP-cortexillin-I or GFP-myo-

sin-II expressing cells and 50 ms for GFP, GFP-fimbrin, or GFP-dynacortin

expressing cells. Bleaching of regions of interest (ROI) occurred at 100%

laser power for 20 iterations and at the cortex for all FRAP measurements

shown in Table 1. Fluorescence of bleached ROIs were background cor-

rected and normalized to overall photobleaching due to laser exposures.

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/


Figure S1. Organization and Quantification of Actin Cytoskeleton

(A) Pt replicas of a wild-type cell at a late stage of cytokinesis imaged BY using TEM. Insets show higher magnification views of the polar cortices. Scale bar,

2 mm.

(B) Zoom in of the bridge in (A). Scale bar, 500 nm.

(C) Scanning electron micrographs of a wild-type cell undergoing cytokinesis prior to fixation, membrane extraction, and metal shadowing. Scale bar, upper

panel, 2 mm; lower panel, 1 mm.

(D) Scanning electron micrograph of a wild-type interphase cell. Scale bar, 10 mm.

(E) Close-up view of a Pt replica of a region of the polar cortex of a dividing cell imaged by TEM. Scale bar, 500 nm.

(F) Quantification of the actin concentration at the furrow normalized to the concentration of the cytoplasm during cytokinesis and plotted versus the relative

diameter (Dmin) normalized by Dx. A total of 56 cells were measured for the complete analysis.
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Figure S2. Myosin-II Dictates the Morphology of the Cleavage Furrow

(A) Western blot of myosin-II expression with dynacortin as a loading control.

(B–D) Time series of wild-type (myoII: GFPmyoII), myosin-II control, and myosin-II cells expressing mutant myosin-II S456L undergoing cytokinesis. Each

strain is expressing GFP-tubulin and the GFP image is shown, confirming that all cells are mitotic. Scale bar, 10 mm and applies to all images. Corresponding

movies are also presented (see Movies S3–S5).

S3
The background fluorescence was accounted for by measuring a region

outside of the cell and the photobleaching rate was determined by fitting

the background corrected fluorescence of a non-bleached region of the

cell to the equation:

FpbðtÞ= a 3 e2 bt + c 3 e2 dt; (1)

where Fpb(t) = the fluorescence at time t. Data analysis was performed by

using ImageJ (http://rsb.info.nih.gov/ij/), LSM browser, Microsoft Excel,

Kaleidograph (Synergy Software, Reading, PA), and Matlab. Movement of

cells during imaging was accounted for by using ImageJ’s Turboreg plug-

in. Recovery times (trec) were determined by fitting the recovery curve to

the equation:

FðtÞ= f 2 g 3 eð2 ð1=trecÞtÞ; (2)

where Fb(t) is the relative fluorescence of the normalized bleached ROI.

Immobile fractions (Fi) were calculated by using the equation:

Fi = 1 2 f=ð1 2 f + gÞ: (3)

For equatorial FRAP measurements, to ensure that we were still measur-

ing fluorescence recovery that was not limited by transport of the proteins

into the furrow region, we did not measure cells with furrows that were:

Furrow width

daughter cell width
%0:4: (4)

Fluorescence Loss in Photobleaching

Fluorescence loss in photobleaching (FLIP) experiments were performed

on interphase Ax2:: pLD1A15SN:GFP-dynacortin; pDRH:RFP-tubulin and

Ax3:Rep orf+ (HS1000):: pLD1A15SN:GFP-fimbrin; pDRH:RFP-tubulin cells.

The cytoplasmic region internal to the cortex was bleached at 100% laser

power for 20 iterations. To determine the fraction of fluorescence that re-

mained at the cortex after bleaching, the ratio of the background corrected

fluorescence at a region of the cortex post- and pre-bleach of the cytoplasm
(G) Phase and fluorescence imaging of GFP-myosin-II in a wild-type cell prior t

cell shows disordered actin filaments in the bridge. Three views are shown. Sc

(H) The distribution of actin filament lengths determined from modeling of 3D-
was calculated. Photobleaching due to nonbleaching exposures at 10%

laser power are negligible after 1 exposure.

Nuclei per Cell Distributions

To determine nuclei/cell distributions, log-phase Ax3:Rep orf+ (HS1000)::

pLD1A15SN and Ax3:Rep orf+ (HS1000):: pLD1A15SN:fimbrin cells were

grown, fixed, stained, and analyzed as previously described [S5].

Cellular Localization

Ax3:Rep orf+ (HS1000):: pLD1A15SN:GFP-fimbrin cells were imaged

at 100 ms exposures in low-fluorescent media to decrease background

fluorescence [S11]. Immunocytochemistry of Ax3:Rep orf+ (HS1000)::

pLD1A15SN cells was performed by using a monoclonal anti-fimbrin 1�

antibody [S4] and a FITC anti-mouse 2� antibody (Sigma).
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Figure S3. The Viscoelasticity jG*j Values at Specific Frequen-

cies for Wild-Type Cells and Cells with Altered Dynacortin,

Myosin-II and/or Fimbrin Expression

Values are present for sampling frequencies of 10 rad/s (100 ms)

and 100 rad/s (10 ms). Error bars represent standard error of the

mean after transformation of values from log space to real

space.
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Figure S4. Fimbrin Is a Global Actin Crosslinker that Slows Cytokinesis

Kinetics and, When Overexpressed, Inhibits Cytokinesis

(A) Like overexpression of the global actin crosslinker dynacortin, fimbrin

overexpression leads to enlarged cells. Scale bar, 10 mm and applies to all

images.

(B) Overexpression of fimbrin (613 cells) increases multinucleation com-

pared to wild-type cells (635 cells).

(C) Cell proliferation in suspension culture is inhibited by fimbrin overex-

pression. Error bars, SEM, n = 3.

(D) Fimbrin localizes to the global actin cortex. Scale bar, 10 mm and applies

to all images.

(E) Western blots of fimbrin RNAi in wild-type and myosin-II cells. Dynacor-

tin is a loading control.

Figure S5. Overexpression of GFP-Dynacortin and GFP-Fimbrin Function

In Vivo Like Overexpressed Nontagged Forms, Which Increase the Effective

Tension, Teff, of Cells as Measured by MPA

*Wt control for the wt: GFPdyn cells was the Ax2 background, and the wt

control for the wt: fimOE cells was the Ax3: Rep orf+ background. Effects

of overexpressing untagged dynacortin has been published previously in

Girard et al. 2004 [S10]. Error bars represent SEM.
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Figure S6. FRAP Analysis of Strains

Confocal images of cells expressing GFP-dynacortin, GFP-fimbrin, GFP-cortexillin-I, GFP-myosin-II, and soluble GFP during interphase. Scale bar, 10 mm

and applies to all images. Representative FRAP recovery curves and curve fits are shown. The distributions of trec determined by fluorescence recovery after

photo-bleaching (FRAP) measurements in wild-type and myosin-II strains during interphase and during wild-type cytokinesis are shown in histograms.

Mean 6 SEM are shown on the histograms. Medians and sample sizes are shown in Table 1.
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Figure S7. Frequency Distributions of Immobile Fractions from FRAP Analysis

Mean 6 SEM are shown on the histograms. These histograms correspond with the median values and sample sizes presented in Table 1. As a check, we

also performed fluorescence loss in photobleaching (FLIP) analysis of GFP-dynacortin (median 19%, n = 10) and GFP-fimbrin (median 25%, n = 11) during

interphase. These values agree well with the median values of 26% and 33% measured for these proteins, respectively, using FRAP (Table 1).
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Table S1. Strains Used in This Study

Strain Features Experiment

wt control Ax2-214 MPA

fimbrin HG1629 MPA

wt control Ax3:Rep orf+ (HS1000):: pLD1A15SN TEM, MPA, LTM, genetic screen, suspension growth,

DAPI, immunocytochemistry, western

wt: fimhp Ax3:Rep orf+ (HS1000):: pLD1A15SN:fimbrin RNAi MPA, LTM, western

wt: dynhp Ax3:Rep orf+ (HS1000):: pLD1A15SN:dynacortin RNAi MPA, LTM

wt: fimOE Ax3:Rep orf+ (HS1000):: pLD1A15SN:fimbrin Genetic screen, suspension growth, DAPI, MPA

wt: dynOE Ax3:Rep orf+ (HS1000):: pLD1A15SN:dynacortin Genetic screen

wt: GFP-fim Ax3:Rep orf+ (HS1000):: pLD1A15SN:GFP-fimbrin FRAP (Interphase)

wt: GFP-fim Ax3:Rep orf+ (HS1000):: pLD1A15SN:GFP-fimbrin;

pDRH:RFP-tubulin

FRAP (Cytokinesis), FLIP

wt: GFP-dyn Ax3:Rep orf+ (HS1000):: pLD1A15SN:GFP-dynacortin FRAP (Interphase)

wt: GFP-dyn Ax2:: pLD1A15SN:GFP-fimbrin; pDRH:RFP-tubulin FRAP (Cytokinesis), FLIP, MPA

wt: GFP-cortI Ax3:Rep orf+ (HS1000):: pLD1A15SN:GFP-cortexillin-I FRAP (Interphase)

wt: GFP-cortI Ax3:Rep orf+ (HS1000):: pLD1A15SN:GFP-cortexillin-I;

pDRH:RFP-tubulin

FRAP (Cytokinesis)

wt: GFP Ax3:Rep orf+ (HS1000):: pLD1A15SN:GFP FRAP

myoII control mhcA (HS1):: pLD1A15SN MPA, LTM, FTD, western

myoII control mhcA (HS1):: pLD1A15SN; pDRH:GFP-tubulin FTD

myoII: S456L mhcA (HS1):: pBIG:S456L; pDRH:GFP-tubulin FTD

myoII: S456L mhcA (HS1):: pBIG:S456L MPA, LTM

myoII: fimhp mhcA (HS1):: pLD1A15SN:fimbrin RNAi FTD, MPA, LTM, western

myoII: dynhp mhcA (HS1):: pLD1A15SN:dynacortin RNAi FTD, MPA, LTM

myoII: fimOE mhcA (HS1):: pLD1A15SN:fimbrin MPA

myoII: GFPmyoII mhcA (HS1):: pBIG:GFP-myosin-II LTM, FRAP

myoII: GFPmyoII mhcA (HS1):: pBIG:GFP-myosin-II LTM

myoII: GFPmyoII mhcA (HS1):: pBIG:GFP-myosin-II; pDRH:RFP-tubulin 3D-EM, MPA

myoII: GFPmyoII mhcA (HS1):: pBIG:GFP-myosin-II; pDRH:GFP-tubulin 3D-decon, TIRF, FTD

myoII: GFP-fim mhcA (HS1):: pLD1A15SN:GFP-fimbrin FRAP, MPA

myoII: GFP-dyn mhcA (HS1):: pLD1A15SN:GFP-dynacortin FRAP

myoII: GFP-cortI mhcA (HS1):: pLD1A15SN:GFP-cortexillin-I FRAP

Table S2. Dx Values of Furrow-Thinning Dynamics Trajectories

Strain Dx n

Values for Figure 2A

myoII:GFPmyoII; GFP-tubulin 2.5 6 0.16 8

myoII control: GFP-tubulin 1.9 6 0.14 5

myoII:S456L; GFP-tubulin 2.2 6 0.18 19

Values for Figure 3E

myoII control 1.9 6 0.087 27

myoII: dynhp* 2.4 6 0.12 15

myoII: fimhp 1.8 6 0.12 14

*Data for myoII:dynhp is reproduced from Zhang and Robinson, 2005 [S9].

Table S3. Elastic Moduli, E, and Number of Cells Measured for DP versus Lp/Rp Plots in Figure 2

E, nN/mm2 (Total number of measurements/Total number of Cells)

Strain Interphase Metaphase Furrow Pole

Wild-type control 0.095 (20/20) 2 2 2

myoII:GFPmyoII 0.10 (25/25) 0.10 (13/8) 0.13 (18/12) 0.12* (19/14)

myoII:S456L 0.075 (20/20) 2 0.13 (13/8) 0.084* (36/24)

myoII control 0.095* (20/20) 2 0.075* (25/19) 0.054* (16/15)

*Note that these strains show offsets, which may reflect nonlinear responses to the applied pressure.
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